Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 585(7825): 397-403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32610343

RESUMO

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Assuntos
Modelos Animais de Doenças , Proteína Proteolipídica de Mielina/deficiência , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/terapia , Animais , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Atividade Motora/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Mutação Puntual , Testes de Função Respiratória , Análise de Sobrevida
2.
J Thromb Haemost ; 22(6): 1715-1726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508397

RESUMO

BACKGROUND: Protease-activated receptor 4 (PAR4) mediates thrombin signaling on platelets and other cells. Our recent structural studies demonstrated that a single nucleotide polymorphism in extracellular loop 3 and PAR4-P310L (rs2227376) leads to a hyporeactive receptor. OBJECTIVES: The goal of this study was to determine how the hyporeactive PAR4 variant in extracellular loop 3 impacts platelet function in vivo using a novel knock-in mouse model (PAR4-322L). METHODS: A point mutation was introduced into the PAR4 gene F2rl3 via CRISPR/Cas9 to create PAR4-P322L, the mouse homolog to human PAR4-P310L. Platelet response to PAR4 activation peptide (AYPGKF), thrombin, ADP, and convulxin was monitored by αIIbß3 integrin activation and P-selectin translocation using flow cytometry or platelet aggregation. In vivo responses were determined by the tail bleeding assay and the ferric chloride-induced carotid artery injury model. RESULTS: PAR4-P/L and PAR4-L/L platelets had a reduced response to AYPGKF and thrombin measured by P-selectin translocation or αIIbß3 activation. The response to ADP and convulxin was unchanged among genotypes. In addition, both PAR4-P/L and PAR4-L/L platelets showed a reduced response to thrombin in aggregation studies. There was an increase in the tail bleeding time for PAR4-L/L mice. The PAR4-P/L and PAR4-L/L mice both showed an extended time to arterial thrombosis. CONCLUSION: PAR4-322L significantly reduced platelet responsiveness to AYPGKF and thrombin, which is in agreement with our previous structural and cell signaling studies. In addition, PAR4-322L had prolonged arterial thrombosis time. Our mouse model provides a foundation to further evaluate the role of PAR4 in other pathophysiological contexts.


Assuntos
Plaquetas , Camundongos Endogâmicos C57BL , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Receptores de Trombina , Trombina , Animais , Plaquetas/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Trombina/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Modelos Animais de Doenças , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/toxicidade , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Selectina-P/metabolismo , Selectina-P/genética , Mutação Puntual , Técnicas de Introdução de Genes , Transdução de Sinais , Trombose/genética , Trombose/sangue , Masculino , Cloretos , Camundongos , Ativação Plaquetária , Sistemas CRISPR-Cas , Humanos , Fenótipo , Compostos Férricos , Oligopeptídeos , Lectinas Tipo C , Receptores Ativados por Proteinase
3.
Science ; 384(6701): 1196-1202, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870301

RESUMO

In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days. Addressing cystic fibrosis (CF), NG-ABE8e messenger RNA (mRNA)-sgR553X LNPs mediated >95% cystic fibrosis transmembrane conductance regulator (CFTR) DNA correction, restored CFTR function in primary patient-derived bronchial epithelial cells equivalent to Trikafta for F508del, corrected intestinal organoids and corrected R553X nonsense mutations in 50% of lung stem cells in CF mice. These findings introduce LNP-enabled tissue stem cell editing for disease-modifying genome correction.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Edição de Genes , Lipossomos , Pulmão , Nanopartículas , Células-Tronco , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas , Fibrose Cística/terapia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Terapia Genética/métodos , Pulmão/metabolismo , Organoides , Células-Tronco/metabolismo
4.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077081

RESUMO

Background: Protease activated receptor 4 (PAR4) mediates thrombin signaling on platelets and other cells. Our recent structural studies demonstrated a single nucleotide polymorphism in extracellular loop 3 (ECL3), PAR4-P310L (rs2227376) leads to a hypo-reactive receptor. Objectives: The goal of this study was to determine how the hypo-reactive PAR4 variant in ECL3 impacts platelet function in vivo using a novel knock-in mouse model (PAR4-322L). Methods: A point mutation was introduced into the PAR4 gene, F2rl3, via CRISPR/Cas9 to create PAR4-P322L, the mouse homolog to human PAR4-P310L. Platelet response to PAR4 activation peptide (AYPGKF), thrombin, ADP, and convulxin was monitored by αIIbß3 integrin activation and P-selectin translocation using flow cytometry or platelet aggregation. In vivo responses were determined by the tail bleeding assay and the ferric chloride-induced carotid artery injury model. Results: PAR4-P/L and PAR4-L/L platelets had a reduced response to AYPGKF and thrombin measured by P-selectin translocation or αIIbß3 activation. The response to ADP and convulxin was unchanged among genotypes. In addition, both PAR4-P/L and PAR4-L/L platelets showed a reduced response to thrombin in aggregation studies. There was an increase in the tail bleeding time for PAR4-L/L mice. The PAR4-P/L and PAR4-L/L mice both showed an extended time to arterial thrombosis. Conclusions: PAR4-322L significantly reduced platelet responsiveness to AYPGKF and thrombin, which is in agreement with our previous structural and cell signaling studies. In addition, PAR4-322L had prolonged arterial thrombosis time. Our mouse model provides a foundation to further evaluate the role of PAR4 in other pathophysiological contexts.

5.
PLoS One ; 13(6): e0199573, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29924856

RESUMO

Nonsense mutations are present in 10% of patients with CF, produce a premature termination codon in CFTR mRNA causing early termination of translation, and lead to lack of CFTR function. There are no currently available animal models which contain a nonsense mutation in the endogenous Cftr locus that can be utilized to test nonsense mutation therapies. In this study, we create a CF mouse model carrying the G542X nonsense mutation in Cftr using CRISPR/Cas9 gene editing. The G542X mouse model has reduced Cftr mRNA levels, demonstrates absence of CFTR function, and displays characteristic manifestations of CF mice such as reduced growth and intestinal obstruction. Importantly, CFTR restoration is observed in G542X intestinal organoids treated with G418, an aminoglycoside with translational readthrough capabilities. The G542X mouse model provides an invaluable resource for the identification of potential therapies of CF nonsense mutations as well as the assessment of in vivo effectiveness of these potential therapies targeting nonsense mutations.


Assuntos
Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Modelos Animais de Doenças , Terapia Genética/métodos , Camundongos Transgênicos , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Intestinos , Masculino , Camundongos Endogâmicos C57BL , Organoides/efeitos dos fármacos , Organoides/metabolismo , RNA Mensageiro/metabolismo , Técnicas de Cultura de Tecidos
6.
Methods Mol Med ; 129: 41-67, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17085804

RESUMO

Diseases with a genetic basis can be modeled with knockout, knock-in, and conditional mutant gene-targeted mice. In the following, we provide detailed protocols for gene targeting. Gene targeting of embryonic stem cells can be accomplished by laboratories equipped for tissue culture. Alternatively, many gene-targeting services divide the work of targeting with a customer lab. In this collaborative situation, knowledge of the entire process helps ensure a successful outcome. The construction of chimeras for germ-line transmission is not described here, because this procedure is beyond the means of most laboratories, typically is provided by transgenic core facilities, and is best learned through hands-on demonstration.


Assuntos
Modelos Animais de Doenças , Marcação de Genes/métodos , Camundongos/genética , Animais , Southern Blotting , Doenças Cardiovasculares/genética , Cromossomos de Mamíferos , DNA/isolamento & purificação , Células-Tronco Embrionárias , Vetores Genéticos , Integrases , Camundongos Knockout , Transfecção/métodos
7.
Nutr Metab (Lond) ; 2: 33, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16300682

RESUMO

BACKGROUND: The metabolic function of PEPCK-C is not fully understood; deletion of the gene for the enzyme in mice provides an opportunity to fully assess its function. METHODS: The gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) (PEPCK-C) was deleted in mice by homologous recombination (PEPCK-C-/- mice) and the metabolic consequences assessed. RESULTS: PEPCK-C-/- mice became severely hypoglycemic by day two after birth and then died with profound hypoglycemia (12 mg/dl). The mice had milk in their stomachs at day two after birth and the administration of glucose raised the concentration of blood glucose in the mice but did not result in an increased survival. PEPCK-C-/- mice have two to three times the hepatic triglyceride content as control littermates on the second day after birth. These mice also had an elevation of lactate (2.5 times), beta-hydroxybutyrate (3 times) and triglyceride (50%) in their blood, as compared to control animals. On day two after birth, alanine, glycine, glutamine, glutamate, aspartate and asparagine were elevated in the blood of the PEPCK-C-/- mice and the blood urea nitrogen concentration was increased by 2-fold. The rate of oxidation of [2-14C]-acetate, and [5-14C]-glutamate to 14CO2 by liver slices from PEPCK-C-/- mice at two days of age was greatly reduced, as was the rate of fatty acid synthesis from acetate and glucose. As predicted by the lack of PEPCK-C, the concentration of malate in the livers of the PEPCK-C-/- mice was 10 times that of controls. CONCLUSION: We conclude that PEPCK-C is required not only for gluconeogenesis and glyceroneogenesis but also for cataplerosis (i.e. the removal of citric acid cycle anions) and that the failure of this process in the livers of PEPCK-C-/- mice results in a marked reduction in citric acid cycle flux and the shunting of hepatic lipid into triglyceride, resulting in a fatty liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA