Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105388, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890782

RESUMO

The main protease of severe acute respiratory syndrome coronavirus 2, Mpro, is a key viral protein essential for viral infection and replication. Mpro has been the target of many pharmacological efforts; however, the host-specific regulation of Mpro protein remains unclear. Here, we report the ubiquitin-proteasome-dependent degradation of Mpro protein in human cells, facilitated by the human E3 ubiquitin ligase ZBTB25. We demonstrate that Mpro has a short half-life that is prolonged via proteasomal inhibition, with its Lys-100 residue serving as a potential ubiquitin acceptor. Using in vitro binding assays, we observed ZBTB25 and Mpro bind to each other in vitro, and using progressive deletional mapping, we further uncovered the required domains for this interaction. Finally, we used an orthologous beta-coronavirus infection model and observed that genetic ablation of ZBTB25 resulted in a more highly infective virus, an effect lost upon reconstitution of ZBTB25 to deleted cells. In conclusion, these data suggest a new mechanism of Mpro protein regulation as well as identify ZBTB25 as an anticoronaviral E3 ubiquitin ligase.


Assuntos
Proteases 3C de Coronavírus , Proteínas de Ligação a DNA , SARS-CoV-2 , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteases Virais/genética , Proteases Virais/metabolismo , Proteínas Virais/metabolismo , SARS-CoV-2/fisiologia , Proteases 3C de Coronavírus/metabolismo , COVID-19/virologia
2.
Nat Chem Biol ; 17(3): 298-306, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495648

RESUMO

The adenosine monophosphate (AMP)-activated protein kinase (Ampk) is a central regulator of metabolic pathways, and increasing Ampk activity has been considered to be an attractive therapeutic target. Here, we have identified an orphan ubiquitin E3 ligase subunit protein, Fbxo48, that targets the active, phosphorylated Ampkα (pAmpkα) for polyubiquitylation and proteasomal degradation. We have generated a novel Fbxo48 inhibitory compound, BC1618, whose potency in stimulating Ampk-dependent signaling greatly exceeds 5-aminoimidazole-4-carboxamide-1-ß-ribofuranoside (AICAR) or metformin. This compound increases the biological activity of Ampk not by stimulating the activation of Ampk, but rather by preventing activated pAmpkα from Fbxo48-mediated degradation. We demonstrate that, consistent with augmenting Ampk activity, BC1618 promotes mitochondrial fission, facilitates autophagy and improves hepatic insulin sensitivity in high-fat-diet-induced obese mice. Hence, we provide a unique bioactive compound that inhibits pAmpkα disposal. Together, these results define a new pathway regulating Ampk biological activity and demonstrate the potential utility of modulating this pathway for therapeutic benefit.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Hipoglicemiantes/farmacologia , Obesidade/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular Transformada , Dieta Hiperlipídica , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas F-Box , Humanos , Hipoglicemiantes/síntese química , Resistência à Insulina , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Dinâmica Mitocondrial/efeitos dos fármacos , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Poliubiquitina/genética , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L484-L494, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997276

RESUMO

Accumulation of excessive extracellular matrix (ECM) components from lung fibroblasts is a feature of systemic sclerosis-associated interstitial lung disease (SSc-ILD), and there is increasing evidence that innate immune signaling pathways contribute to these processes. Toll-like receptors (TLRs) are innate immune sensors activated by danger signals derived from pathogens or host molecular patterns. Several damage-associated molecular pattern (DAMP) molecules are elevated in SSc-ILD plasma, including ligands that activate TLR9, an innate immune sensor recently implicated in driving profibrotic responses in fibroblasts. Fibronectin and the isoform fibronectin-extra domain A (FN-EDA) are prominent in pathological extracellular matrix accumulation, but mechanisms promoting FN-EDA accumulation are only partially understood. Here, we show that TLR9 activation increases FN-EDA accumulation in MRC5 and SSc-ILD fibroblasts, but that this effect is independent of changes in FN-EDA gene transcription. Rather, we describe a novel mechanism where TLR9 activation inhibits FN-EDA turnover via reduced FN-EDA ubiquitination. TLR9 ligand ODN2006 reduces ubiquitinated FN-EDA destined for lysosomal degradation, an effect abrogated with TLR9 knockdown or inhibition. Taken together, these results provide rationale for disrupting the TLR9 signaling axis or FN-EDA degradation pathways to reduce FN-EDA accumulation in SSc-ILD fibroblasts. More broadly, enhancing intracellular degradation of ECM components through TLR9 inhibition or enhanced ECM turnover could be a novel strategy to attenuate pathogenic ECM accumulation in SSc-ILD.


Assuntos
Fibronectinas , Doenças Pulmonares Intersticiais , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Ligantes , Doenças Pulmonares Intersticiais/metabolismo , Isoformas de Proteínas/metabolismo , Receptor Toll-Like 9/genética , Ubiquitinação
4.
J Biol Chem ; 295(13): 4171-4180, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071084

RESUMO

Systemic scleroderma (SSc) is an autoimmune disease that affects over 2.5 million people globally. SSc results in dysfunctional connective tissues with excessive profibrotic signaling, affecting skin, cardiovascular, and particularly lung tissue. Over three-quarters of individuals with SSc develop pulmonary fibrosis within 5 years, the main cause of SSc mortality. No approved medicines to manage lung SSc currently exist. Recent research suggests that profibrotic signaling by transforming growth factor ß (TGF-ß) is directly tied to SSc. Previous studies have also shown that ubiquitin E3 ligases potently control TGF-ß signaling through targeted degradation of key regulatory proteins; however, the roles of these ligases in SSc-TGF-ß signaling remain unclear. Here we utilized primary SSc patient lung cells for high-throughput screening of TGF-ß signaling via high-content imaging of nuclear translocation of the profibrotic transcription factor SMAD family member 2/3 (SMAD2/3). We screened an RNAi library targeting ubiquitin E3 ligases and observed that knockdown of the E3 ligase Kelch-like protein 42 (KLHL42) impairs TGF-ß-dependent profibrotic signaling. KLHL42 knockdown reduced fibrotic tissue production and decreased TGF-ß-mediated SMAD activation. Using unbiased ubiquitin proteomics, we identified phosphatase 2 regulatory subunit B'ϵ (PPP2R5ϵ) as a KLHL42 substrate. Mechanistic experiments validated ubiquitin-mediated control of PPP2R5ϵ stability through KLHL42. PPP2R5ϵ knockdown exacerbated TGF-ß-mediated profibrotic signaling, indicating a role of PPP2R5ϵ in SSc. Our findings indicate that the KLHL42-PPP2R5ϵ axis controls profibrotic signaling in SSc lung fibroblasts. We propose that future studies could investigate whether chemical inhibition of KLHL42 may ameliorate profibrotic signaling in SSc.


Assuntos
Proteína Fosfatase 2/genética , Escleroderma Sistêmico/genética , Proteína Smad2/genética , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética , Fibroblastos/metabolismo , Fibrose/genética , Fibrose/patologia , Humanos , Pulmão/citologia , Pulmão/metabolismo , Proteólise , Proteômica , Escleroderma Sistêmico/patologia , Transdução de Sinais/genética
5.
Am J Respir Cell Mol Biol ; 62(2): 157-167, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31385713

RESUMO

TLR8 (Toll-like receptor 8) is an intracellular pattern recognition receptor that senses RNA in endosomes to initiate innate immune signaling through NF-κB, and mechanisms regulating TLR8 protein abundance are not completely understood. Protein degradation is a cellular process controlling protein concentrations, accomplished largely through ubiquitin transfer directed by E3 ligase proteins to substrates. In the present study, we show that TLR8 has a short half-life in THP-1 monocytes (∼1 h) and that TLR8 is ubiquitinated and degraded in the proteasome. Treatment with the TLR8 agonist R848 causes rapid depletion of TLR8 concentrations at early time points, an effect blocked by proteasomal inhibition. We show a novel role for RNF216 (ring finger protein 216), an E3 ligase that targets TLR8 for ubiquitination and degradation. RNF216 overexpression reduces TLR8 concentrations, whereas RNF216 knockdown stabilizes TLR8. We describe a potential role for TLR8 activation by circulating RNA ligands in humans with acute respiratory distress syndrome (ARDS): Plasma and extracted RNA fractions from subjects with ARDS activated TLR8 in vitro. MicroRNA (miRNA) expression profiling revealed several circulating miRNAs from subjects with ARDS. miRNA mimics promoted TLR8 proteasomal degradation in THP-1 cells. These data show that TLR8 proteasomal disposal through RNF216 in response to RNA ligands regulates TLR8 cellular concentrations and may have implications for innate immune signaling. In addition, TLR8 activation by circulating RNA ligands may be a previously underrecognized stimulus contributing to excessive innate immune signaling characteristic of ARDS.


Assuntos
MicroRNA Circulante/imunologia , Monócitos/metabolismo , Receptor 8 Toll-Like/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteínas de Transporte/genética , Humanos , Imunidade Inata/imunologia , NF-kappa B/metabolismo , Ubiquitinação/imunologia
6.
J Biol Chem ; 294(45): 16527-16534, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31586034

RESUMO

Nutrient sensing is a critical cellular process controlling metabolism and signaling. mTOR complex 1 (mTORC1) is the primary signaling hub for nutrient sensing and, when activated, stimulates anabolic processes while decreasing autophagic flux. mTORC1 receives nutrient status signals from intracellular amino acid sensors. One of these sensors, Sestrin-2, functions as an intracellular sensor of cytosolic leucine and inhibitor of mTORC1 activity. Genetic studies of Sestrin-2 have confirmed its critical role in regulating mTORC1 activity, especially in the case of leucine starvation. Sestrin-2 is known to be transcriptionally controlled by several mechanisms; however, the post-translational proteolytic regulation of Sestrin-2 remains unclear. Here, we explored how Sestrin-2 is regulated through the ubiquitin proteasome system. Using an unbiased screening approach of an siRNA library targeting ubiquitin E3 ligases, we identified a RING-type E3 ligase, ring finger protein 186 (RNF186), that critically mediates the Sestrin-2 ubiquitination and degradation. We observed that RNF186 and Sestrin-2 bind each other through distinct C-terminal motifs and that Lys-13 in Sestrin-2 is a putative ubiquitin acceptor site. RNF186 knockdown increased Sestrin-2 protein levels and decreased mTORC1 activation. These results reveal a new mechanism of E3 ligase control of mTORC1 activity through the RNF186-Sestrin-2 axis, suggesting that RNF186 inhibition may be a potential strategy to increase levels of the mTORC1 inhibitor Sestrin-2.


Assuntos
Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Meios de Cultura/química , Meios de Cultura/metabolismo , Cicloeximida/farmacologia , Humanos , Leupeptinas/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Nucleares/química , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Proteólise , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
7.
FASEB J ; 31(9): 3894-3903, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28515150

RESUMO

The receptor for advanced glycation end products (RAGE) is a highly expressed cell membrane receptor serving to anchor lung epithelia to matrix components, and it also amplifies inflammatory signaling during acute lung injury. However, mechanisms that regulate its protein concentrations in cells remain largely unknown. Here we show that RAGE exhibits an extended life span in lung epithelia (t½ 6 h), is monoubiquitinated at K374, and is degraded in lysosomes. The RAGE ligand ODN2006, a synthetic oligodeoxynucleotide resembling pathogenic hypomethylated CpG DNA, promotes rapid lysosomal RAGE degradation through activation of protein kinase Cζ (PKCζ), which phosphorylates RAGE. PKCζ overexpression enhances RAGE degradation, while PKCζ knockdown stabilizes RAGE protein levels and prevents ODN2006-mediated degradation. We identify that RAGE is targeted by the ubiquitin E3 ligase subunit F-box protein O10 (FBXO10), which associates with RAGE to mediate its ubiquitination and degradation. FBXO10 depletion in cells stabilizes RAGE and is required for ODN2006-mediated degradation. These data suggest that modulation of regulators involved in ubiquitin-mediated disposal of RAGE might serve as unique molecular inputs directing RAGE cellular concentrations and downstream responses, which are critical in an array of inflammatory disorders, including acute lung injury.-Evankovich, J., Lear, T., Mckelvey, A., Dunn, S., Londino, J., Liu, Y., Chen, B. B., Mallampalli, R. K. Receptor for advanced glycation end products is targeted by FBXO10 for ubiquitination and degradation.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas F-Box/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Proteólise , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ubiquitinação , Animais , Antígenos de Neoplasias/genética , Linhagem Celular , Ilhas de CpG , DNA/genética , Proteínas F-Box/genética , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos/farmacologia , Proteína Quinase C/genética , Receptor para Produtos Finais de Glicação Avançada/genética
8.
Biochem J ; 474(20): 3543-3557, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28883123

RESUMO

The IFN gamma receptor 1 (IFNGR1) binds IFN-γ and activates gene transcription pathways crucial for controlling bacterial and viral infections. Although decreases in IFNGR1 surface levels have been demonstrated to inhibit IFN-γ signaling, little is known regarding the molecular mechanisms controlling receptor stability. Here, we show in epithelial and monocytic cell lines that IFNGR1 displays K48 polyubiquitination, is proteasomally degraded, and harbors three ubiquitin acceptor sites at K277, K279, and K285. Inhibition of glycogen synthase kinase 3 beta (GSK3ß) destabilized IFNGR1 while overexpression of GSK3ß increased receptor stability. We identified critical serine and threonine residues juxtaposed to ubiquitin acceptor sites that impacted IFNGR1 stability. In CRISPR-Cas9 IFNGR1 generated knockout cell lines, cellular expression of IFNGR1 plasmids encoding ubiquitin acceptor site mutations demonstrated significantly impaired STAT1 phosphorylation and decreased STAT1-dependent gene induction. Thus, IFNGR1 undergoes rapid site-specific polyubiquitination, a process modulated by GSK3ß. Ubiquitination appears to be necessary for efficient IFNGR1-dependent gamma gene induction and represents a relatively uncharacterized regulatory mechanism for this receptor.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais/fisiologia , Sistemas CRISPR-Cas/genética , Células HEK293 , Humanos , Interferon gama/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Receptores de Interferon/química , Transdução de Sinais/efeitos dos fármacos , Receptor de Interferon gama
9.
Am J Physiol Cell Physiol ; 313(5): C584-C592, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978524

RESUMO

As an α-chemokine receptor specific for stromal-derived-factor-1 (SDF-1, also called CXCL12), C-X-C chemokine receptor type 4 (CXCR4) plays a vital role in chemotactically attracting lymphocytes during inflammation. CXCR4 also regulates HIV infection due to its role as one of the chemokine coreceptors for HIV entry into CD4+ T cells. Chemokine receptors and their signaling pathways have been shown to be regulated by the process of ubiquitination, a posttranslational modification, guided by ubiquitin E3 ligases, which covalently links ubiquitin chains to lysine residues within target substrates. Here we describe a novel mechanism regulating CXCR4 protein levels and subsequent CXCR4/CXCL12 signaling pathway through the ubiquitination and degradation of the receptor in response to ligand stimulation. We identify that an uncharacterized really interesting new gene (RING) finger ubiquitin E3 ligase, RING finger protein 113A (RNF113A), directly ubiquitinates CXCR4 in cells, leading to CXCR4 degradation, and therefore disrupts the signaling cascade. We determined that the K331 residue within CXCR4 is essential for RNF113A-mediated ubiquitin conjugation. Overexpression of RNF113A significantly reduces CXCL12-induced kinase activation in HeLa cells, whereas RNF113A knockdown enhances CXCL12-induced downstream signaling. Further, RNF113A expression and silencing directly affect cell motility in a wound healing assay. These results suggest that RNF113A plays an important role in CXCR4 signaling through the ubiquitination and degradation of CXCR4. This mechanistic study might provide new understanding of HIV immunity and neutrophil activation and motility regulated by CXCR4.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Infecções por HIV/imunologia , Células HeLa , Humanos , Estabilidade Proteica , Ubiquitinação
10.
J Biol Chem ; 290(29): 18124-18133, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26037928

RESUMO

The inflammasome is a multiprotein complex that augments the proinflammatory response by increasing the generation and cellular release of key cytokines. Specifically, the NALP3 inflammasome requires two-step signaling, priming and activation, to be functional to release the proinflammatory cytokines IL-1ß and IL-18. The priming process, through unknown mechanisms, increases the protein levels of NALP3 and pro-IL-1ß in cells. Here we show that LPS increases the NALP3 protein lifespan without significantly altering steady-state mRNA in human cells. LPS exposure reduces the ubiquitin-mediated proteasomal processing of NALP3 by inducing levels of an E3 ligase component, FBXO3, which targets FBXL2. The latter is an endogenous mediator of NALP3 degradation. FBXL2 recognizes Trp-73 within NALP3 for interaction and targets Lys-689 within NALP3 for ubiquitin ligation and degradation. A unique small molecule inhibitor of FBXO3 restores FBXL2 levels, resulting in decreased NALP3 protein levels in cells and, thereby, reducing the release of IL-1ß and IL-18 in human inflammatory cells after NALP3 activation. Our findings uncover NALP3 as a molecular target for FBXL2 and suggest that therapeutic targeting of the inflammasome may serve as a platform for preclinical intervention.


Assuntos
Proteínas de Transporte/imunologia , Proteínas F-Box/imunologia , Inflamassomos/imunologia , Lipopolissacarídeos/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas F-Box/metabolismo , Humanos , Imunidade Inata , Inflamassomos/metabolismo , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteólise , Proteínas Ligases SKP Culina F-Box/imunologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
J Biol Chem ; 290(19): 11843-52, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25778398

RESUMO

Fbxl7, a component of the Skp1·Cul1·F-box protein type ubiquitin E3 ligase, regulates mitotic cell cycle progression. Here we demonstrate that overexpression of Fbxl7 in lung epithelia decreases the protein abundance of survivin, a member of the inhibitor of apoptosis family. Fbxl7 mediates polyubiquitylation and proteasomal degradation of survivin by interacting with Glu-126 within its carboxyl-terminal α helix. Furthermore, both Lys-90 and Lys-91 within survivin serve as ubiquitin acceptor sites. Ectopically expressed Fbxl7 impairs mitochondrial function, whereas depletion of Fbxl7 protects mitochondria from actions of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of oxidative phosphorylation. Compared with wild-type survivin, cellular expression of a survivin mutant protein deficient in its ability to interact with Fbxl7 (E126A) and a ubiquitylation-resistant double point mutant (KK90RR/KK91RR) rescued mitochondria to a larger extent from damage induced by overexpression of Fbxl7. Therefore, these data suggest that the Skp1·Cul1·F-box protein complex subunit Fbxl7 modulates mitochondrial function by controlling the cellular abundance of survivin. The results raise opportunities for F-box protein targeting to preserve mitochondrial function.


Assuntos
Apoptose , Proteínas F-Box/metabolismo , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético , Proteínas F-Box/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Mutação , Estrutura Secundária de Proteína , Proteínas Repressoras/metabolismo , Survivina
12.
Cytokine ; 88: 193-195, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27658114

RESUMO

The pathogenetic heterogeneity of pulmonary fibrosis yields both challenges and opportunities for therapy. Its complexity implicates a variety of cellular processes, signaling pathways, and genetics as drivers of disease. TGF-ß stimulation is one avenue, and is central to pro-fibrotic protein expression, leading to decreased pulmonary function. Here we report our recent findings, introducing the E3 ligase Fibrosis Inducing E3 Ligase 1 (FIEL1) as an important regulator of TGF-ß signaling through the selective degradation of PIAS4. FIEL1 exacerbates bleomycin-induced murine pulmonary fibrosis, while its silencing attenuates the fibrotic phenotype. Further, we developed a small molecule inhibitor of FIEL1 (BC-1485) that inhibits the degradation of PIAS4, and ameliorates fibrosis in murine models. New understanding of this pathway illustrates the many targeting opportunities among the complexity of pulmonary fibrosis in the continuing search for therapy.


Assuntos
Proteínas Inibidoras de STAT Ativados/metabolismo , Proteólise , Fibrose Pulmonar/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Modelos Animais de Doenças , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/antagonistas & inibidores
13.
FEBS J ; 290(15): 3802-3811, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36938956

RESUMO

Dysregulated cytokine signalling is a hallmark of inflammatory bowel diseases. Inflammatory responses of the colon are regulated by the suppressor of cytokine signalling (SOCS) proteins. SOCS1 is a key member of this family, and its function is critical in maintaining an appropriate inflammatory response through the JAK/STAT signalling pathway. Dysregulation of SOCS1 protein has been identified as a causal element in colonic inflammatory diseases. Despite this, it remains unclear how SOCS1 protein is regulated. Here, we identify that SOCS1 protein is targeted for degradation by the ubiquitin proteasome system, mediated by the E3 ubiquitin ligase KIAA0317 during experimental colonic inflammation. We characterize the mechanism of protein-protein interaction and ubiquitin conjugation to SOCS1 and demonstrate that the modulation of SOCS1 protein level leads to stark effects on JAK/STAT inflammatory signalling. Together, these results provide insight into the regulation of colonic inflammation through a new mechanism of ubiquitin-based control of SOCS1 protein.


Assuntos
Proteínas Supressoras da Sinalização de Citocina , Ubiquitina , Humanos , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Inflamação/genética , Citocinas/metabolismo , Colo/metabolismo
14.
J Cardiovasc Aging ; 2(2)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36819765

RESUMO

Senescent cell accumulation is increasingly associated with a number of age-related cardiovascular diseases. Now, a new manuscript in Nature Aging suggests that a novel vaccine-based strategy might provide a targeted method to eliminate the senescent cell population.

15.
Front Pharmacol ; 13: 828643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145418

RESUMO

Aquaporin 5 (AQP5) is expressed in several cell types in the lung and regulates water transport, which contributes to barrier function during injury and the composition of glandular secretions. Reduced AQP5 expression is associated with barrier dysfunction during acute lung injury, and strategies to enhance its expression are associated with favorable phenotypes. Thus, pharmacologically enhancing AQP5 expression could be beneficial. Here, we optimized a high-throughput assay designed to detect AQP5 abundance using a cell line stably expressing bioluminescent-tagged AQP5. We then screened a library of 1153 compounds composed of FDA-approved drugs for their effects on AQP5 abundance. We show compounds Niclosamide, Panobinostat, and Candesartan Celexitil increased AQP5 abundance, and show that Niclosamide has favorable cellular toxicity profiles. We determine that AQP5 levels are regulated in part by ubiquitination and proteasomal degradation in lung epithelial cells, and mechanistically Niclosamide increases AQP5 levels by reducing AQP5 ubiquitination and proteasomal degradation. Functionally, Niclosamide stabilized AQP5 levels in response to hypotonic stress, a stimulus known to reduce AQP5 levels. In complementary assays, Niclosamide increased endogenous AQP5 in both A549 cells and in primary, polarized human bronchial epithelial cells compared to control-treated cells. Further, we measured rapid cell volume changes in A549 cells in response to osmotic stress, an effect controlled by aquaporin channels. Niclosamide-treated A549 cell volume changes occurred more rapidly compared to control-treated cells, suggesting that increased Niclosamide-mediated increases in AQP5 expression affects functional water transport. Taken together, we describe a strategy to identify repurposed compounds for their effect on AQP5 protein abundance. We validated the effects of Niclosamide on endogenous AQP5 levels and in regulating cell-volume changes in response to tonicity changes. Our findings highlight a unique approach to screen for drug effects on protein abundance, and our workflow can be applied broadly to study compound effects on protein abundance in lung epithelial cells.

16.
Nat Commun ; 12(1): 3907, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162861

RESUMO

SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds. We identify homoharringtonine and halofuginone as the most attractive agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrate marked resistance to SARS-CoV-2 infection in both live and pseudoviral in vitro models. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat active COVID-19 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Mepesuccinato de Omacetaxina/farmacologia , Piperidinas/farmacologia , Quinazolinonas/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Células Cultivadas , Chlorocebus aethiops , Ensaios de Triagem em Larga Escala/métodos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Inibidores da Síntese de Proteínas/farmacologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Res Sq ; 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-34013250

RESUMO

The endo-lysosomal pathway plays an important role in pathogen clearance and both bacteria and viruses have evolved complex mechanisms to evade this host system. Here, we describe a novel aspect of coronaviral infection, whereby the master transcriptional regulator of lysosome biogenesis - TFEB - is targeted for proteasomal-mediated degradation upon viral infection. Through mass spectrometry analysis and an unbiased siRNA screen, we identify that TFEB protein stability is coordinately regulated by the E3 ubiquitin ligase subunit DCAF7 and the PAK2 kinase. In particular, viral infection triggers marked PAK2 activation, which in turn, phosphorylates and primes TFEB for ubiquitin-mediated protein degradation. Deletion of either DCAF7 or PAK2 blocks viral-mediated TFEB degradation and protects against viral-induced cytopathic effects. We further derive a series of small molecules that interfere with the DCAF7-TFEB interaction. These agents inhibit viral-triggered TFEB degradation and demonstrate broad anti-viral activities including attenuating in vivo SARS-CoV-2 infection. Together, these results delineate a viral-triggered pathway that disables the endogenous cellular system that maintains lysosomal function and suggest that small molecule inhibitors of the E3 ubiquitin ligase DCAF7 represent a novel class of endo-lysosomal, host-directed, anti-viral therapies.

18.
Redox Biol ; 32: 101485, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171724

RESUMO

NRF2 is a master regulator of cellular anti-oxidant and anti-inflammatory responses, and strategies to augment NRF2-dependent responses may beneficial in many diseases. Basal NRF2 protein level is constrained by constitutive KEAP1-mediated degradation, but in the presence of electrophiles, NRF2 ubiquitination is inhibited. Impeded NRF2 degradation increases NRF2 protein, resulting in up-regulation of anti-oxidant gene transcription, and decreased inflammation. KEAP1-independent mechanisms regulating NRF2 stability have also been reported. Here we employed an HTS approach and identified a small molecule, BC-1901S, that stabilized NRF2 and increased its activity. BC-1901S activated NRF2 by inhibiting NRF2 ubiquitination in a KEAP1-independent manner. It further increased NRF2-dependent anti-oxidant gene transcription, and exhibited anti-inflammatory effects in vitro and in vivo. Further, we identified a new NRF2-interacting partner, DDB1 and CUL4 Associated Factor 1 (DCAF1), an E3 ligase that targeted NRF2 for proteasomal degradation. Mechanistically, BC-1901S directly bound to DCAF1 and disrupted NRF2/DCAF1 interaction, thus activating NRF2. These findings provide new insights in NRF2 biology and NRF2 based anti-inflammatory therapy.


Assuntos
Fator 2 Relacionado a NF-E2 , Ubiquitina-Proteína Ligases , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
19.
Res Sq ; 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32818215

RESUMO

SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identified small molecules that can reduce surface expression of TMPRSS2 using a 2,700 FDA-approved or current clinical trial compounds. Among these, homoharringtonine and halofuginone appear the most potent agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrated marked resistance to SARS-CoV-2 pseudoviral infection. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat COVID-19 infection.

20.
JCI Insight ; 5(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32493843

RESUMO

Mitochondrial quality control is mediated by the PTEN-induced kinase 1 (PINK1), a cytoprotective protein that is dysregulated in inflammatory lung injury and neurodegenerative diseases. Here, we show that a ubiquitin E3 ligase receptor component, FBXO7, targets PINK1 for its cellular disposal. FBXO7, by mediating PINK1 ubiquitylation and degradation, was sufficient to induce mitochondrial injury and inflammation in experimental pneumonia. A computational simulation-based screen led to the identification of a small molecule, BC1464, which abrogated FBXO7 and PINK1 association, leading to increased cellular PINK1 concentrations and activities, and limiting mitochondrial damage. BC1464 exerted antiinflammatory activity in human tissue explants and murine lung inflammation models. Furthermore, BC1464 conferred neuroprotection in primary cortical neurons, human neuroblastoma cells, and patient-derived cells in several culture models of Parkinson's disease. The data highlight a unique opportunity to use small molecule antagonists that disrupt PINK1 interaction with the ubiquitin apparatus to enhance mitochondrial quality, limit inflammatory injury, and maintain neuronal viability.


Assuntos
Proteínas F-Box/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases/metabolismo , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Estabilidade Enzimática , Proteínas F-Box/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Fármacos Neuroprotetores/química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA