RESUMO
A better understanding of the pathophysiology of cardiac fat depots is crucial to describe their role in the development of cardiovascular diseases. To this end, we have developed a method to isolate mature fat cells from the pericardial adipose tissue (PAT), the most accessible cardiac fat depot during cardiac surgery. Using enzymatic isolation, we were able to successfully obtain mature fat cells together with the corresponding cells of the stromal vascular fraction (SVF). We subjected the PAT adipocytes to thorough morphological and molecular characterization, including detailed fatty acid profiling, and simultaneously investigated their reactivity to external stimuli. Our approach resulted in highly purified fat cells with sustained viability for up to 72 h after explantation. Remarkably, these adipocytes responded to multiple challenges, including pro-inflammatory and metabolic stimuli, indicating their potential to trigger a pro-inflammatory response and modulate endothelial cell behavior. Furthermore, we have created conditions to maintain whole PAT in culture and preserve their viability and reactivity to external stimuli. The efficiency of cell recovery combined with minimal dedifferentiation underscores the promise for future applications as a personalized tool for screening and assessing individual patient responses to drugs and supplements or nutraceuticals.
Assuntos
Adipócitos , Tecido Adiposo , Separação Celular , Pericárdio , Humanos , Pericárdio/metabolismo , Pericárdio/citologia , Adipócitos/metabolismo , Adipócitos/citologia , Tecido Adiposo/citologia , Separação Celular/métodos , Sobrevivência Celular , Diferenciação Celular , Ácidos Graxos/metabolismo , Feminino , Pessoa de Meia-IdadeRESUMO
The flavivirus capsid protein (C) is separated from the downstream premembrane (PrM) protein by a hydrophobic sequence named capsid anchor (Ca). During polyprotein processing, Ca is sequentially cleaved by the viral NS2B/NS3 protease on the cytosolic side and by signal peptidase on the luminal side of the endoplasmic reticulum (ER). To date, Ca is considered important mostly for directing translocation of PrM into the ER lumen. In this study, the role of Ca in the assembly and secretion of Zika virus was investigated using a pseudovirus-based approach. Our results show that, while Ca-mediated anchoring of C to the ER membrane is not needed for the production of infective particles, Ca expression in cis with respect to PrM is strictly required to allow proper assembly of infectious particles. Finally, we show that the presence of heterologous, but not homologous, Ca induces degradation of E through the autophagy/lysosomal pathway.IMPORTANCE The capsid anchor (Ca) is a single-pass transmembrane domain at the C terminus of the capsid protein (C) known to function as a signal for the translocation of PrM into the ER lumen. The objective of this study was to further examine the role of Ca in Zika virus life cycle, whether involved in the formation of nucleocapsid through association with C or in the formation of viral envelope. In this study, we show that Ca has a function beyond the one of translocation signal, controlling protein E stability and therefore its availability for assembly of infectious particles.
Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/fisiologia , Morfogênese , Precursores de Proteínas/metabolismo , Proteínas do Envelope Viral/metabolismo , Infecção por Zika virus/virologia , Zika virus/fisiologia , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Citosol/metabolismo , Citosol/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Células HEK293 , Humanos , Precursores de Proteínas/genética , Homologia de Sequência , Células Vero , Proteínas do Envelope Viral/genética , Montagem de Vírus , Infecção por Zika virus/metabolismoRESUMO
IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.
Assuntos
Doença de Crohn , Infecções por Escherichia coli , Humanos , Doença de Crohn/patologia , Escherichia coli , Células Th17/patologia , Inibidores do Fator de Necrose Tumoral , Intestinos/patologia , Inflamação/patologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Interleucina-23 , Mucosa Intestinal/patologia , Aderência BacterianaRESUMO
In Crohn's disease (CD) patients, the adherent-invasive Escherichia coli (AIEC) pathovar contributes to the chronic inflammation typical of the disease via its ability to invade gut epithelial cells and to survive in macrophages. We show that, in the AIEC strain LF82, inactivation of the pyrD gene, encoding dihydroorotate dehydrogenase (DHOD), an enzyme of the de novo pyrimidine biosynthetic pathway, completely abolished its ability of to grow in a macrophage environment-mimicking culture medium. In addition, pyrD inactivation reduced flagellar motility and strongly affected biofilm formation by downregulating transcription of both type 1 fimbriae and curli subunit genes. Thus, the pyrD gene appears to be essential for several cellular processes involved in AIEC virulence. Interestingly, vidofludimus (VF), a DHOD inhibitor, has been proposed as an effective drug in CD treatment. Despite displaying a potentially similar binding mode for both human and E. coli DHOD in computational molecular docking experiments, VF showed no activity on either growth or virulence-related processes in LF82. Altogether, our results suggest that the crucial role played by the pyrD gene in AIEC virulence, and the presence of structural differences between E. coli and human DHOD allowing for the design of specific inhibitors, make E. coli DHOD a promising target for therapeutical strategies aiming at counteracting chronic inflammation in CD by acting selectively on its bacterial triggers.
RESUMO
Staphylococcus epidermidis is an opportunistic pathogen and a frequent cause of nosocomial infections. In this work, we show that, among 51 S. epidermidis isolates from an Italian hospital, only a minority displayed biofilm formation, regardless of their isolation source (peripheral blood, catheter, or skin wounds); however, among the biofilm-producing isolates, those from catheters were the most efficient in biofilm formation. Interestingly, most isolates including strong biofilm producers displayed production levels of PIA (polysaccharide intercellular adhesin), the main S. epidermidis extracellular polysaccharide, similar to reference S. epidermidis strains classified as non-biofilm formers, and much lower than those classified as intermediate or high biofilm formers, possibly suggesting that high levels of PIA production do not confer a particular advantage for clinical isolates. Finally, while for the reference S. epidermidis strains the biofilm production clearly correlated with the decreased sensitivity to antibiotics, in particular, protein synthesis inhibitors, in our clinical isolates, such positive correlation was limited to tetracycline. In contrast, we observed an inverse correlation between biofilm formation and the minimal inhibitory concentrations for levofloxacin and teicoplanin. In addition, in growth conditions favoring PIA production, the biofilm-forming isolates showed increased sensitivity to daptomycin, clindamycin, and erythromycin, with increased tolerance to the trimethoprim/sulfamethoxazole association. The lack of direct correlation between the biofilm production and increased tolerance to antibiotics in S. epidermidis isolates from a clinical setting would suggest, at least for some antimicrobials, the possible existence of a trade-off between the production of biofilm determinants and antibiotic resistance.
RESUMO
Inflammatory Bowel Diseases (IBDs) are gastrointestinal disorders characterized by chronic, relapsing inflammation, with growing incidence worldwide over the last decades and distinctive features in the pediatric age. An increasing body of evidence indicates that gut microbiota plays a major role in inflammatory disorders, including IBDs. In this review we will discuss the most recent evidences on dysbiotic changes associated with gut inflammation, as well as environmental and genetic factors contributing to IBD pathogenesis, with a focus on the peculiarities of the pediatric age.
Assuntos
Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Microbioma Gastrointestinal , Criança , Pré-Escolar , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Disbiose , Humanos , Lactente , Recém-NascidoRESUMO
Hypersecretion of proinflammatory cytokines and dysregulated activation of the IL-23/Th17 axis in response to intestinal microbiota dysbiosis are key factors in the pathogenesis of inflammatory bowel diseases (IBD). In this work, we studied how Lactobacillus and Bifidobacterium strains affect AIEC-LF82 virulence mechanisms and the consequent inflammatory response linked to the CCR6-CCL20 and IL-23/Th17 axes in Crohn's disease (CD) and ulcerative colitis (UC) patients. All Lactobacillus and Bifidobacterium strains significantly reduced the LF82 adhesion and persistence within HT29 intestinal epithelial cells, inhibiting IL-8 secretion while not affecting the CCR6-CCL20 axis. Moreover, they significantly reduced LF82 survival within macrophages and dendritic cells, reducing the secretion of polarizing cytokines related to the IL-23/Th17 axis, both in healthy donors (HD) and UC patients. In CD patients, however, only B. breve Bbr8 strain was able to slightly reduce the LF82 persistence within dendritic cells, thus hampering the IL-23/Th17 axis. In addition, probiotic strains were able to modulate the AIEC-induced inflammation in HD, reducing TNF-α and increasing IL-10 secretion by macrophages, but failed to do so in IBD patients. Interestingly, the probiotic strains studied in this work were all able to interfere with the IL-23/Th17 axis in UC patients, but not in CD patients. The different interaction mechanisms of probiotic strains with innate immune cells from UC and CD patients compared to HD suggest that testing on CD-derived immune cells may be pivotal for the identification of novel probiotic strains that could be effective also for CD patients.