Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 111(47): 11948-60, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-17985850

RESUMO

Femtosecond time-resolved photoelectron spectroscopy and high-level theoretical calculations were used to study the effects of methyl substitution on the electronic dynamics of the alpha,beta-enones acrolein (2-propenal), crotonaldehyde (2-butenal), methylvinylketone (3-buten-2-one), and methacrolein (2-methyl-2-propenal) following excitation to the S2(pipi*) state at 209 and 200 nm. We determine that following excitation the molecules move rapidly away from the Franck-Condon region, reaching a conical intersection promoting relaxation to the S1(npi*) state. Once on the S1 surface, the trajectories access another conical intersection, leading them to the ground state. Only small variations between molecules are seen in their S2 decay times. However, the position of methyl group substitution greatly affects the relaxation rate from the S1 surface and the branching ratios to the products. Ab initio calculations used to compare the geometries, energies, and topographies of the S1/S0 conical intersections of the molecules are not able to satisfactorily explain the variations in relaxation behavior. We propose that the S1 lifetime differences are caused by specific dynamical factors that affect the efficiency of passage through the S1/S0 conical intersection.

2.
Science ; 311(5758): 219-22, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16357226

RESUMO

The coupled electronic and vibrational motions governing chemical processes are best viewed from the molecule's point of view-the molecular frame. Measurements made in the laboratory frame often conceal information because of the random orientations the molecule can take. We used a combination of time-resolved photoelectron spectroscopy, multidimensional coincidence imaging spectroscopy, and ab initio computation to trace a complete reactant-to-product pathway-the photodissociation of the nitric oxide dimer-from the molecule's point of view, on the femtosecond time scale. This method revealed an elusive photochemical process involving intermediate electronic configurations.

3.
Faraday Discuss ; 127: 193-212, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15471347

RESUMO

Time-resolved photoelectron spectroscopy (TRPES) is emerging as a useful tool for the study of non-adiabatic dynamics in isolated polyatomic molecules and clusters due to its sensitivity to both electronic and vibrational dynamics. A powerful extension of TRPES, coincidence imaging spectroscopy (CIS), based upon femtosecond time-resolved 3D momentum vector imaging of both photoions and photoelectrons in coincidence, is a new technique for the study of complex dissociative processes. Here we show how these spectroscopies can be used to study both non-adiabatic intramolecular and photodissociation dynamics in polyatomic molecules. Intramolecular dynamics in the alpha, beta-enones acrolein, crotonaldehyde and methyl vinyl ketone are studied using both TRPES and laser-induced fluorescence of HCO(X) product yields. The location of the methyl group is seen to have very dramatic effects on the relative electronic relaxation rates and the HCO(X) yield. Applying both TRPES and CIS to the 200 nm and 209 nm photodissociation of the nitric oxide dimer, (NO)2, we observe the fs time-scale evolution of the excited parent neutral via its photoelectron spectrum and the emergence of the NO(A) photofragment including its energy and angular distributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA