Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298716

RESUMO

Dentin regeneration is the preferred method used to preserve dental pulp vitality after pulp exposure due to caries. Red light-emitting diode irradiation (LEDI), which is based on photobiomodulation (PBM), has been used to promote hard-tissue regeneration. However, the underlying mechanism still needs elucidation. This study aimed to explore the mechanism involved in red LEDI affecting dentin regeneration. Alizarin red S (ARS) staining revealed that red LEDI induced mineralization of human dental pulp cells (HDPCs) in vitro. We further distinguished the cell proliferation (0-6 d), differentiation (6-12 d), and mineralization (12-18 d) of HDPCs in vitro and treated cells either with or without red LEDI in each stage. The results showed that red LEDI treatment in the mineralization stage, but not the proliferation or differentiation stages, increased mineralized nodule formation around HDPCs. Western blot also indicated that red LEDI treatment in the mineralization stage, but not the proliferation or differentiation stages, upregulated the expression of dentin matrix marker proteins (dentin sialophosphoprotein, DSPP; dentin matrix protein 1, DMP1; osteopontin, OPN) and an intracellular secretory vesicle marker protein (lysosomal-associated membrane protein 1, LAMP1). Therefore, the red LEDI might enhance the matrix vesicle secretion of HDPCs. On the molecular level, red LEDI enhanced mineralization by activating the mitogen-activated protein kinase (MAPK) signaling pathways (ERK and P38). ERK and P38 inhibition reduced mineralized nodule formation and the expression of relevant marker proteins. In summary, red LEDI enhanced the mineralization of HDPCs by functioning to produce a positive effect in the mineralization stage in vitro.


Assuntos
Polpa Dentária , Odontoblastos , Humanos , Polpa Dentária/metabolismo , Odontoblastos/metabolismo , Diferenciação Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Fosfatase Alcalina/metabolismo , Fosfoproteínas/metabolismo
2.
Am J Orthod Dentofacial Orthop ; 162(1): 108-121, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35288020

RESUMO

This case report describes the successful orthodontic treatment of an 11-year-old girl with skeletal Class II malocclusion and congenitally missing mandibular second premolars. To resolve her upper lip protrusion and restore the missing mandibular premolars, extraction of the maxillary first premolars and subsequent autotransplantation of the extracted premolars onto the site of the missing mandibular second premolars were performed. To ensure the success of the autotransplantation and subsequent orthodontic treatment, an orthodontic force was preapplied on the donor teeth, and the recipient sockets were prepared with the aid of replica teeth. Thereafter, comprehensive orthodontic treatment was performed to close the extraction space in the maxilla and align the mandibular dentition, including the transplants. The patient achieved a functional occlusion with an improved facial profile. Results of the orthodontic treatment and autotransplantation were stable during the 5-year follow-up. On the basis of this report, a management protocol for a biomechanically enhanced autotransplantation procedure was suggested. This approach would enable an effective treatment procedure, thereby increasing the usefulness of autotransplantation.


Assuntos
Má Oclusão Classe II de Angle , Ligamento Periodontal , Dente Pré-Molar/transplante , Criança , Feminino , Humanos , Má Oclusão Classe II de Angle/cirurgia , Maxila , Transplante Autólogo
3.
Medicina (Kaunas) ; 58(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35334610

RESUMO

Background and Objectives: Human dental pulp cells (HDPCs) can be used for dentin regeneration due to its odontogenic differentiation property. Icariin can induce osteogenic differentiation of stem cells. However, its potential to induce odontogenic differentiation of HDPCs remains unclear. Thus, the aim of this study was to evaluate the capacity of icariin to induce odontogenic differentiation of HDPCs and investigate the underlying molecular mechanism. Materials and Methods: Cell viability assay was used to detect the cytotoxicity of icariin to HDPCs. Effect of icariin on HDPCs chemotaxis was measured by scratch migration assay. The mineralized and odontogenic differentiation of HDPCs was assessed by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, real-time PCR, and Western blot of dentin matrix protein 1 (DMP 1) and dentin sialophosphoprotein (DSPP). In addition, Mitogen-activated protein kinase (MAPK) signaling pathway of icariin-induced biomineralization was investigated by Western blot. Results: Cells treated with icariin at all concentrations tested maintained viability, indicating that icariin was biocompatible. Icariin accelerated HDPCs chemotaxis (p < 0.05). Expression levels of related odontogenic markers were increased in the presence of icariin (p < 0.05). Icariin-induced odontogenic differentiation occurred via activation of the MAPK signaling pathway. Furthermore, MAPK inhibitors suppressed expression levels of DSPP and DMP 1 protein, ALP activity, and mineralization of HDPCs. Conclusions: Icariin can upregulate odontogenic differentiation of HDPCs by triggering the MAPK signaling pathway.


Assuntos
Polpa Dentária , Osteogênese , Diferenciação Celular , Flavonoides , Humanos , Odontogênese/fisiologia
4.
Arch Microbiol ; 203(6): 3229-3234, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33835235

RESUMO

A Gram-stain-negative, strictly aerobic, non-flagellated, rod-shaped bacterium, designated GSB7T, was isolated from seawater collected at the Yellow Sea coast of South Korea. Catalase and oxidase activities were positive. Growth occurred at pH 6.0-9.0 (optimum pH 7.0), 10-40 °C (optimum 30 °C) and with 0-8% NaCl (optimum 1-2%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSB7T belonged to the genus Marivivens, showing the sequence similarities of 96.3, 96.1, and 96.0% with Marivivens niveibacter HSLHS2T, Limimaricola hongkongensis DSM17492T, and Marivivens donghaensis AM-4T, respectively. The respiratory quinone was ubiquinone-10 and the major fatty acids were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C18:1 ω7c 11-methyl, C16:0 and C10:0 3-OH. The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid, and five unidentified lipids. The DNA G + C content calculated from the whole-genome sequence was 60.6 mol%. On the basis of phenotypic, chemotaxonomic and genotypic characteristics presented in this study, strain GSB7T is suggested to represent a novel species of the genus Marivivens, for which the name Marivivens aquimaris sp. nov. is proposed. The type strain is GSB7T (= KCTC 82026T = JCM 34042T).


Assuntos
Rhodobacteraceae , Água do Mar , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Rhodobacteraceae/classificação , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Água do Mar/microbiologia , Especificidade da Espécie
5.
Medicina (Kaunas) ; 57(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201357

RESUMO

Background and Objectives: Bromelain is a mixture of protease obtained from pineapple fruits or stems. Even though the biological mechanism of action of bromelain has not been completely understood, it is well known that bromelain possesses anticancer, anti-inflammatory and immunomodulatory effects. This study investigated the anti-inflammatory effects of bromelain on lipopolysaccharide (LPS)-induced human dental pulp cells (hDPCs). Materials and Methods: Cell viability after bromelain treatment was measured using WST-1 assay. We exposed hDPCs to 5 µg/mL of LPS with 2.5 or 5 µg/mL of bromelain. We performed reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay to detect interleukin-1ß, interleukin-6, and interleukin-8 levels. Western blots were used to detect intercellular adhesion molecules-1 (ICAM-1) and vascular cell adhesion molecules-1 (VCAM-1) levels. Immunofluorescence staining and Western blots were used to determine bromelain's anti-inflammatory mechanism. We also performed alkaline phosphatase and Alizarin red staining to verify mineralization nodule formation. Results: Bromelain at 2.5, 5, 10, or 20 µg/mL did not affect the viability of hDPCs significantly. LPS increased interleukin-1ß, interleukin-6, interleukin-8, ICAM-1 and VCAM-1 expression in hDPCs. Bromelain significantly decreased interleukin-1ß, interleukin-6, interleukin-8, ICAM-1, and VCAM-1 levels in hDPCs, which were stimulated by LPS. Bromelain treatment significantly reduced p65 phosphorylation in the cytoplasm and the nucleus. It also significantly decreased phosphorylation levels of extracellular signal-related kinases (ERK) and p38 mitogen-activated protein kinases (p38). Bromelain also promoted ALP activity and mineralized nodule formation. Conclusions: Bromelain inhibits the expression of inflammatory cytokines in LPS-stimulated hDPCs. The inhibitory effect of bromelain on inflammatory mediators is related to decreased NF-κB and the MAPK pathway. Therefore, bromelain might have the potential to be used for regenerative endodontics, including vital pulp therapy.


Assuntos
Bromelaínas , Lipopolissacarídeos , Anti-Inflamatórios/farmacologia , Bromelaínas/farmacologia , Células Cultivadas , Polpa Dentária , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
6.
Odontology ; 108(2): 194-201, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31512103

RESUMO

The purpose of this study is to assess the effect of autoclave sterilization on the cyclic fatigue and torsional fracture resistance of ProTaper Universal (PTU), K3XF, HyFlex EDM (EDM), and TF adaptive (TFA). Sixty instruments from each file type were divided into two categories for cyclic fatigue group (CGr) and torsional fracture group (TGr). CGr and TGr were divided into three subgroups, respectively, consisting of ten instruments from each file type. Cyclic fatigue fracture test was performed using artificial canal made of stainless steel, and the mean number of cycles to failure (NCF) were determined. CGr1, the files were tested to establish baseline for NCF; CGr2, the files were tested cyclic fatigue after 10 cycles of autoclave; CGr3, instruments were autoclaved after being cycled to 25, 50, and 75% of corresponding NCF determined in CGr1, followed by cyclic fatigue test. The torsional fracture test was performed without autoclave (TGr1), after 3-cycle autoclave (TGr2), and 7-cycle autoclave (TGr3), respectively, which evaluated maximum torque and angular deflection. NCF, maximum torque and angular deflection were compared using one-way ANOVA with Bonferroni test. Two-way ANOVA was performed to determine the interaction between 'autoclave treatment' and 'type of NiTi file'. EDM showed highest NCF within the same autoclave treatment. TFA presented the lowest maximum torque and the highest angular deflection, and PTU presented the lowest angular deflection. Within the same NiTi file systems, most of NCF, maximum torque and angular deflection of tested files were not significantly influenced by autoclave condition.


Assuntos
Instrumentos Odontológicos , Preparo de Canal Radicular , Ligas Dentárias , Desenho de Equipamento , Falha de Equipamento , Teste de Materiais , Esterilização , Estresse Mecânico , Titânio
7.
BMC Oral Health ; 20(1): 101, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276610

RESUMO

BACKGROUND: Parathyroid hormone-related protein (PTHrP) plays an important role in many physiological processes, including bone regeneration. The function of PTHrP is similar to PTH. It promotes osteogenic differentiation in MC3T3-E1 cells. The aim of this study was to investigate whether PTHrP might have odontogenic differentiation ability in human dental pulp cells (hDPCs). METHODS: The viability of hDPCs after stimulation with PTHrP was measured. Real-time polymerase chain reaction and Western blot analysis were performed to evaluate the expression levels of odontogenic markers and activation of protein kinase B (PKB/AKT), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). To evaluate mineralized nodule formation, alkaline phosphatase (ALP) staining and alizarin red S staining were performed. RESULTS: PTHrP promoted odontogenic differentiation as evidenced by the formation of mineralized nodules, the induction of ALP activity, and the upregulation of odontogenic markers (dentin sialophosphoprotein and dentin matrix protein-1). The phosphorylation of AKT, ERK, JNK, and p38 was increased by PTHrP. However, an AKT inhibitor (LY294002), an ERK inhibitor (U0126), a JNK inhibitor (SP600125), and a p38 inhibitor (SB203580) inhibited the increase of mineralization induced by PTHrP. CONCLUSION: The present study revealed that PTHrP could promote odontogenic differentiation and mineralization through activating the AKT, ERK, JNK, and p38 signaling pathways. These results provide novel insights into the odontogenic action of PTHrP.


Assuntos
Diferenciação Celular , Polpa Dentária/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Polpa Dentária/citologia , Humanos , Osteogênese
8.
BMC Oral Health ; 17(1): 89, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28549486

RESUMO

BACKGROUND: Chlormadinone acetate (CMA) is a derivative of progesterone and is used as an oral contraceptive. The aim of this study was to investigate the effects of CMA on odontogenic differentiation and mineralization of human dental pulp cells (hDPCs) and related signaling pathways. METHODS: Cell viability was determined by the water-soluble tetrazolium (WST)-1 assay. Odontogenic differentiation of hDPCs was evaluated by real-time polymerase chain reaction using odontogenic marker genes, such as alkaline phosphatase (ALP), osteocalcin (OCN), dentin sialophosphoprotein (DSPP), and dentin matrix protein-1 (DMP-1). Mineralization of hDPCs was evaluated by ALP staining and alizarin red staining. The extracellular signal-regulated kinase (ERK) pathway was examined by Western blot analysis. RESULTS: There was no statistically significant difference in cell viability between the control and CMA-treated groups. Our analysis of odontogenic marker genes indicated that CMA enhanced the expression of those genes. CMA-treated hDPCs showed increased ALP activity and formation of mineralized nodules, compared with control-treated cells. In addition, CMA stimulation resulted in phosphorylation of ERK and resulted in inhibition of downstream molecules by the ERK inhibitor U0126. CONCLUSIONS: These findings suggest that CMA improves odontogenic differentiation and mineralization of hDPCs through the ERK signaling pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Acetato de Clormadinona/farmacologia , Anticoncepcionais Orais Sintéticos/farmacologia , Polpa Dentária/citologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Calcificação Fisiológica/fisiologia , Sobrevivência Celular , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Humanos , Odontoblastos/efeitos dos fármacos , Osteocalcina/genética , Osteocalcina/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo
9.
Biomed Mater ; 19(4)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740059

RESUMO

Cell-based tissue engineering often requires the use of scaffolds to provide a three-dimensional (3D) framework for cell proliferation and tissue formation. Polycaprolactone (PCL), a type of polymer, has good printability, favorable surface modifiability, adaptability, and biodegradability. However, its large-scale applicability is hindered by its hydrophobic nature, which affects biological properties. Composite materials can be created by adding bioactive materials to the polymer to improve the properties of PCL scaffolds. Osteolectin is an odontogenic factor that promotes the maintenance of the adult skeleton by promoting the differentiation of LepR+ cells into osteoblasts. Therefore, the aim of this study was to evaluate whether 3D-printed PCL/osteolectin scaffolds supply a suitable microenvironment for the odontogenic differentiation of human dental pulp cells (hDPCs). The hDPCs were cultured on 3D-printed PCL scaffolds with or without pores. Cell attachment and cell proliferation were evaluated using EZ-Cytox. The odontogenic differentiation of hDPCs was evaluated by alizarin red S staining and alkaline phosphatase assays. Western blot was used to evaluate the expression of the proteins DSPP and DMP-Results: The attachment of hDPCs to PCL scaffolds with pores was significantly higher than to PCL scaffolds without pores. The odontogenic differentiation of hDPCs was induced more in PCL/osteolectin scaffolds than in PCL scaffolds, but there was no statistically significant difference. 3D-printed PCL scaffolds with pores are suitable for the growth of hDPCs, and the PCL/osteolectin scaffolds can provide a more favorable microenvironment for the odontogenic differentiation of hDPCs.


Assuntos
Diferenciação Celular , Proliferação de Células , Polpa Dentária , Odontogênese , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Humanos , Polpa Dentária/citologia , Poliésteres/química , Alicerces Teciduais/química , Diferenciação Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Células Cultivadas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Osteoblastos/citologia
10.
Biomed Mater ; 19(4)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688311

RESUMO

This study investigated the effectiveness of bone regeneration upon the application of leptin and osteolectin to a three-dimensional (3D) printed poly(ϵ-caprolactone) (PCL) scaffold. A fused deposition modeling 3D bioprinter was used to fabricate scaffolds with a diameter of 4.5 mm, a height of 0.5 mm, and a pore size of 420-520 nm using PCL (molecular weight: 43 000). After amination of the scaffold surface for leptin and osteolectin adhesion, the experimental groups were divided into the PCL scaffold (control), the aminated PCL (PCL/Amine) scaffold, the leptin-coated PCL (PCL/Leptin) scaffold, and the osteolectin-coated PCL (PCL/Osteo) scaffold. Next, the water-soluble tetrazolium salt-1 (WST-1) assay was used to assess cell viability. All groups exhibited cell viability rates of >100%. Female 7-week-old Sprague-Dawley rats were used forin vivoexperiments. Calvarial defects were introduced on the rats' skulls using a 5.5 mm trephine bur. The rats were divided into the PCL (control), PCL/Leptin, and PCL/Osteo scaffold groups. The scaffolds were then inserted into the calvarial defect areas, and the rats were sacrificed after 8-weeks to analyze the defect area. Micro-CT analysis indicated that the leptin- and osteolectin-coated scaffolds exhibited significantly higher bone regeneration. Histological analysis revealed new bone and blood vessels in the calvarial defect area. These findings indicate that the 3D-printed PCL scaffold allows for patient-customized fabrication as well as the easy application of proteins like leptin and osteolectin. Moreover, leptin and osteolectin did not show cytotoxicity and exhibited higher bone regeneration potential than the existing scaffold.


Assuntos
Regeneração Óssea , Leptina , Poliésteres , Alicerces Teciduais , Animais , Feminino , Humanos , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Leptina/metabolismo , Teste de Materiais , Osteogênese/efeitos dos fármacos , Poliésteres/química , Impressão Tridimensional , Ratos Sprague-Dawley , Crânio/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
11.
Malar J ; 12: 47, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23374507

RESUMO

BACKGROUND: With the increasing resistance of malaria parasites to available drugs, there is an urgent demand to develop new anti-malarial drugs. Calpain inhibitor, ALLN, is proposed to inhibit parasite proliferation by suppressing haemoglobin degradation. This provides Plasmodium calpain as a potential target for drug development. Pf-calpain, a cysteine protease of Plasmodium falciparum, belongs to calpain-7 family, which is an atypical calpain not harboring Ca2+-binding regulatory motifs. In this present study, in order to establish the screening system for Pf-calpain specific inhibitors, the active form of Pf-calpain was first identified. METHODS: Recombinant Pf-calpain including catalytic subdomain IIa (rPfcal-IIa) was heterologously expressed and purified. Enzymatic activity was determined by both fluorogenic substrate assay and gelatin zymography. Molecular homology modeling was carried out to address the activation mode of Pf-calpain in the aspect of structural moiety. RESULTS: Based on the measurement of enzymatic activity and protease inhibitor assay, it was found that the active form of Pf-calpain only contains the catalytic subdomain IIa, suggesting that Pf-calpain may function as a monomeric form. The sequence prediction indicates that the catalytic subdomain IIa contains all amino acid residues necessary for catalytic triad (Cys-His-Asn) formation. Molecular modeling suggests that the Pf-calpain subdomain IIa makes an active site, holding the catalytic triad residues in their appropriate orientation for catalysis. The mutation analysis further supports that those amino acid residues are functional and have enzymatic activity. CONCLUSION: The identified active form of Pf-calpain could be utilized to establish high-throughput screening system for Pf-calpain inhibitors. Due to its unique monomeric structural property, Pf-calpain could be served as a novel anti-malarial drug target, which has a high specificity for malaria parasite. In addition, the monomeric form of enzyme may contribute to relatively simple synthesis of selective inhibitors.


Assuntos
Antimaláricos/farmacologia , Calpaína/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Antimaláricos/isolamento & purificação , Calpaína/genética , Calpaína/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Homologia de Sequência de Aminoácidos
12.
Mar Genomics ; 71: 101047, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620053

RESUMO

Pectic oligosaccharides, which are considered to be potential prebiotics, may be generated by pectin-degrading enzymes. Here, we report the complete genome sequence of the pectin-degrading marine bacterium, Flavobacteriaceae bacterium GSB9, which was isolated from seawater of South Korea. The complete genome sequence revealed that the chromosome was 3,630,376 bp in size, had a G + C content of 36.6 mol%, and was predicted to encode 3100 protein-coding sequences (CDSs), 40 tRNAs, and six 16S-23S-5S rRNAs. Genome sequence analysis revealed that this strain possesses multiple genes predicted to encode pectin-degrading enzymes. Our analysis may facilitate the future application of this strain against pectin in various industries.


Assuntos
Flavobacteriaceae , Pectinas , Fases de Leitura Aberta , RNA Ribossômico 16S , República da Coreia , Flavobacteriaceae/genética
13.
Heliyon ; 9(12): e23282, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144358

RESUMO

Alleviating inflammation and promoting dentine regeneration is critical for the healing of pulpitis. In this study, we investigated the anti-inflammatory, angiogenesis and odontogenesis function of icariin on Human dental pulp cells (HDPCs) under inflammatory state. Furthermore, the underlying mechanisms was also evaluated. Icariin attenuated the LPS-induced pro-inflammatory marker expression, such as interleukin-1ß (IL-1ß), IL-6 and IL-8. The immunoblotting and immunofluorescence staining results showed that icariin suppressed the inflammatory responses mediated by the protein kinase B (Akt) and nuclear factor kappa-B (NF-κB) signaling cascades. Additionally, icariin also upregulated the expression of odontogenic and angiogenic genes and proteins (namely dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), anti-collagen Ⅰ (COL-Ⅰ), and vascular endothelial growth factor (VEGF) and fibroblast growth factor-1 (FGF-1)), alkaline phosphatase activity, and calcium nodule deposition in LPS-exposed HDPCs. In a word, our findings indicated that icariin attenuated pulp inflammation and promoted odontogenic and angiogenic differentiation in the inflammatory state. Icariin may be a promising vital pulp therapy agent for the regenerative treatment of the inflamed dental pulp.

14.
J Endod ; 49(12): 1660-1667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774945

RESUMO

INTRODUCTION: Osteolectin is a secreted glycoprotein of the C-type lectin domain superfamily, expressed in bone tissues and is reported as a novel osteogenic factor that promotes bone regeneration. However, the effect of osteolectin on human dental pulp cells (hDPCs) has not been reported. Therefore, we aimed to investigate the odontoblastic differentiation of osteolectin in hDPCs and further attempt to reveal its underlying mechanism. METHODS: Cytotoxicity assays were used to detect the cytotoxicity of osteolectin. The odontoblastic differentiation of hDPCs and its underlying mechanisms were measured by the alkaline phosphatase (ALP) activity, mineralized spots formation, and the gene and protein expression of odontoblastic differentiation through ALP staining, Alizarin red S staining, quantitative real-time polymerase chain reaction, and Western blot analysis, respectively. RESULTS: WST-1 assay showed osteolectin at concentrations below 300 ng/ml was noncytotoxic and safe for hDPCs. The following experiment demonstrated that osteolectin could increase ALP activity, accelerate the mineralization process, and up-regulate the odontogenic differentiation markers in both gene and protein levels (P < .05). Osteolectin stimulated the phosphorylation of ERK, JNK, and Protein kinase B (AKT) in hDPCs. Extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and AKT inhibitors decreased ALP activity and mineralization capacity and suppressed the expression of dentin sialophosphoprotein and dentin matrix protein-1. CONCLUSION: Osteolectin can promote odontoblastic differentiation of hDPCs, and the whole process may stimulate ERK, JNK, and AKT signaling pathways by increasing p-ERK, p-JNK, and p-AKT signals.


Assuntos
Proteínas da Matriz Extracelular , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Polpa Dentária , Diferenciação Celular , Transdução de Sinais , Odontoblastos , Fosfatase Alcalina/metabolismo , Células Cultivadas , Proliferação de Células , Fosfoproteínas
15.
Dent Mater J ; 42(6): 860-867, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37914232

RESUMO

This study aimed to assess the effect of different calcium silicate-based root canal sealers (CSRS) on osteogenic effect in human periodontal ligament cells (hPDLCs). hPDLCs were cultured in a medium containing extract of 5 types of CSRS. The specimens were assessed by the cell cytotoxicity test, alkaline phosphatase staining, alizarin red S staining, quantitative real-time PCR, Western blot analysis, and enzyme-linked immunosorbent assay. The diluted concentrations of extracted solutions had no significant effect on the viability of hPDLCs. There was a statistically significant difference in the mRNA expression level of bone sialoprotein (BSP), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) among some groups. The protein expressions of BSP, OCN, and RUNX2 were significantly higher in some groups compared to the control group. The CSRS did not interfere with the osteogenic differentiation of hPDLCs, compared to the control group. CSRS are shown to have biocompatibility and osteogenic differentiation effect on hPDLCs.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Humanos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Compostos de Cálcio/farmacologia , Diferenciação Celular , Ligamento Periodontal , Fosfatase Alcalina/metabolismo
16.
Restor Dent Endod ; 48(2): e18, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37284346

RESUMO

Objectives: This study aimed to determine whether collagen triple helix repeat containing-1 (CTHRC1), which is involved in vascular remodeling and bone formation, can stimulate odontogenic differentiation and angiogenesis when administered to human dental pulp stem cells (hDPSCs). Materials and Methods: The viability of hDPSCs upon exposure to CTHRC1 was assessed with the WST-1 assay. CTHRC1 doses of 5, 10, and 20 µg/mL were administered to hDPSCs. Reverse-transcription polymerase reaction was used to detect dentin sialophosphoprotein, dentin matrix protein 1, vascular endothelial growth factor, and fibroblast growth factor 2. The formation of mineralization nodules was evaluated using Alizarin red. A scratch wound assay was conducted to evaluate the effect of CTHRC1 on cell migration. Data were analyzed using 1-way analysis of variance followed by the Tukey post hoc test. The threshold for statistical significance was set at p < 0.05. Results: CTHRC1 doses of 5, 10, and 20 µg/mL had no significant effect on the viability of hDPSCs. Mineralized nodules were formed and odontogenic markers were upregulated, indicating that CTHRC1 promoted odontogenic differentiation. Scratch wound assays demonstrated that CTHRC1 significantly enhanced the migration of hDPSCs. Conclusions: CTHRC1 promoted odontogenic differentiation and mineralization in hDPSCs.

17.
BMB Rep ; 56(10): 545-550, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574806

RESUMO

Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomyinduced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 545-550].


Assuntos
NF-kappa B , Osteoporose , Humanos , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Diferenciação Celular , Osteoporose/metabolismo
18.
Biomed Mater ; 19(1)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37972541

RESUMO

This study investigated the effects on odontoblast differentiation of a 3D-printed poly-ϵ-caprolactone (PCL) scaffold that incorporated leptin. Material extrusion-type 3D printing with a 43 000-molecular weight PCL material was used to fabricate a PCL scaffold with a 6 mm diameter, 1 mm height, and 270-340 µm pore size. The experimental groups were PCL scaffolds (control group), PCL scaffolds with aminated surfaces (group A), and PCL scaffolds with leptin on the aminated surface (group L). The aminated surface was treated with 1,6-hexanediamine and verified by ninhydrin analysis. Leptin loading was performed using Traut's reagent and 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC). Groups A and L showed significantly higher surface wettability, pulp cell adhesion, and proliferation than the control group. Group L exhibited increased alkaline phosphatase, calcification deposits, and mRNA and protein expression of dentin sialophosphoprotein and dentin matrix acidic phosphoprotein 1 compared with the control group. In this study, a 3D-printed PCL scaffold containing leptin was enhanced odontoblast differentiation and dental pulp cells adhesion and proliferation.


Assuntos
Leptina , Alicerces Teciduais , Humanos , Polpa Dentária , Poliésteres , Diferenciação Celular , Impressão Tridimensional , Proliferação de Células , Engenharia Tecidual
19.
Microbiol Res ; 254: 126898, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34710834

RESUMO

An ectoine-producing bacterium, designated SWCN16T, was isolated from seawater and could be grown in a medium containing up to 12 % NaCl. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SWCN16T belonged to the genus Aestuariispira, class Alphaproteobacteria, and shared the highest 16S rRNA gene sequence similarity of 96.8% with Aestuariispira insulae CECT 8488T. The phenotypic, chemotaxonomic, and genotypic characteristics findings of this study suggested that strain SWCN16T represented a novel species of the genus Aestuariispira. We propose the name Aestuariispira ectoiniformans sp. nov. for this species. Whole-genome sequencing analysis of the isolate revealed a putative ectABC gene cluster for ectoine biosynthesis. These genes were found to be functional using ectoine synthesis testing and S16-ectBAC cells, which were pET21a-ectBAC-transformed E. coli BL21 cells. We found that S16-ectBAC synthesized about 1.67 g/L extracellular ectoine and about 0.59 g/L intracellular ectoine via bioconversion at optimum conditions.


Assuntos
Diamino Aminoácidos , Rhodospirillaceae , Água do Mar , Diamino Aminoácidos/genética , Escherichia coli/genética , Genes Bacterianos/genética , Família Multigênica , Filogenia , RNA Ribossômico 16S/genética , Rhodospirillaceae/classificação , Rhodospirillaceae/genética , Água do Mar/microbiologia , Especificidade da Espécie
20.
Materials (Basel) ; 15(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35329621

RESUMO

A calcium silicate cement/methacrylated gelatin (GelMa) scaffold has been applied in tissue engineering; however, the research on its applications in dental tissue regeneration remains lacking. We investigate the effect of this scaffold on human dental pulp stem cells (hDPSCs). hDPSCs were cultured in 3D-printed GelMa and MTA-GelMa scaffolds. Cell adhesion was evaluated using scanning electron microscopy images. Cells were cultured in an osteogenic differentiation medium, which contained a complete medium or α-MEM containing aqueous extracts of the 3D-printd GelMa or MTA-GelMa scaffold with 2% FBS, 10 mM ß-glycerophosphate, 50 µg/mL ascorbic acid, and 10 nM dexamethasone; cell viability and differentiation were shown by WST-1 assay, Alizarin Red S staining, and alkaline phosphatase staining. Quantitative real-time PCR was used to measure the mRNA expression of DSPP and DMP-1. One-way analysis of variance followed by Tukey's post hoc test was used to determine statistically significant differences, identified at p < 0.05. hDPSCs adhered to both the 3D-printed GelMa and MTA-GelMa scaffolds. There was no statistically significant difference between the GelMa and MTA-GelMa groups and the control group in the cell viability test. Compared with the control group, the 3D-printed MTA-GelMa scaffold promoted the odontogenic differentiation of hDPSCs. The 3D-printed MTA-GelMa scaffold is suitable for the growth of hDPSCs, and the scaffold extracts can better promote odontoblastic differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA