Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Cell Physiol ; 236(4): 2318-2332, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32840881

RESUMO

Retinoblastoma (RB) is a pediatric ocular tumor mostly occurring due to the biallelic loss of RB1 gene in the developing retina. Early studies of genomic aberrations in RB have provided a valuable insight into how RB can progress following the tumor-initiating RB1 mutations and have established a notion that inactivation of RB1 gene is critical to initiate RB but this causative genetic lesion alone is not sufficient for malignant progression. With the advent of high-throughput sequencing technologies, we now have access to the comprehensive genomic and epigenetic landscape of RB and have come to appreciate that RB tumorigenesis requires both genetic and epigenetic alterations that might be directly or indirectly driven by RB1 loss. This integrative perspective on RB tumorigenesis has inspired research efforts to better understand the types and functions of epigenetic mechanisms contributing to RB development, leading to the identification of multiple epigenetic regulators misregulated in RB in recent years. A complete understanding of the intricate network of genetic and epigenetic factors in modulation of gene expression during RB tumorigenesis remains a major challenge but would be crucial to translate these findings into therapeutic interventions. In this review, we will provide an overview of chromatin regulators identified to be misregulated in human RB among the numerous epigenetic factors implicated in RB development. For a subset of these chromatin regulators, recent findings on their functions in RB development and potential therapeutic applications are discussed.


Assuntos
Montagem e Desmontagem da Cromatina , Epigênese Genética , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Terapia de Alvo Molecular , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/genética , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(40): 10737-10742, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923916

RESUMO

Ocular neovascularization is a devastating pathology of numerous ocular diseases and is a major cause of blindness. Caveolin-1 (Cav-1) plays important roles in the vascular system. However, little is known regarding its function and mechanisms in ocular neovascularization. Here, using comprehensive model systems and a cell permeable peptide of Cav-1, cavtratin, we show that Cav-1 is a critical player in ocular neovascularization. The genetic deletion of Cav-1 exacerbated and cavtratin administration inhibited choroidal and retinal neovascularization. Importantly, combined administration of cavtratin and anti-VEGF-A inhibited neovascularization more effectively than monotherapy, suggesting the existence of other pathways inhibited by cavtratin in addition to VEGF-A. Indeed, we found that cavtratin suppressed multiple critical components of pathological angiogenesis, including inflammation, permeability, PDGF-B and endothelial nitric oxide synthase expression (eNOS). Mechanistically, we show that cavtratin inhibits CNV and the survival and migration of microglia and macrophages via JNK. Together, our data demonstrate the unique advantages of cavtratin in antiangiogenic therapy to treat neovascular diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais/farmacologia , Caveolina 1/fisiologia , Neovascularização de Coroide/prevenção & controle , MAP Quinase Quinase 4/metabolismo , Fragmentos de Peptídeos/farmacologia , Neovascularização Retiniana/prevenção & controle , Animais , Caveolina 1/farmacologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Quimioterapia Combinada , Humanos , Camundongos Knockout , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
3.
Pharmacol Res ; 143: 33-39, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30851357

RESUMO

Oxidative stress, due to insufficiency of antioxidants or over-production of oxidants, can lead to severe cell and tissue damage. Oxidative stress occurs constantly and has been shown to be involved in innumerable diseases, such as degenerative, cardiovascular, neurological, and metabolic disorders, cancer, and aging, thus highlighting the vital need of antioxidant defense mechanisms. Vascular endothelial growth factor B (VEGF-B) was discovered a long time ago, and is abundantly expressed in most types of cells and tissues. VEGF-B remained functionally mysterious for many years and later on has been shown to be minimally angiogenic. Recently, VEGF-B is reported to be a potent antioxidant by boosting the expression of key antioxidant enzymes. Thus, one major role of VEGF-B lies in safeguarding tissues and cells from oxidative stress-induced damage. VEGF-B may therefore have promising therapeutic utilities in treating oxidative stress-related diseases. In this review, we discuss the current knowledge on the newly discovered antioxidant function of VEGF-B and the related molecular mechanisms, particularly, in relationship to some oxidative stress-related diseases, such as retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, glaucoma, amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease.


Assuntos
Antioxidantes/uso terapêutico , Oftalmopatias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fator B de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Antioxidantes/farmacologia , Oftalmopatias/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/farmacologia
4.
Pharmacol Res ; 146: 104277, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112749

RESUMO

Neovascular diseases, such as many cancers and ocular disorders, are life threatening and devastating. Although anti-vascular endothelial growth factor A (VEGF-A) therapy is available, many patients are not responsive and drug resistance can develop. To try to overcome these problems, combination therapy targeting VEGF-A and platelet-derived growth factor B (PDGF-B) was tested. However, one obvious drawback was that the other VEGF and PDGF family members were not inhibited and therefore could compensate. Indeed, this was, at least to some extent, demonstrated by the disappointing outcomes. To this end, we designed novel multi-targeted inhibitors that can block most of the VEGF and PDGF family members simultaneously by making a fusion protein containing the ligand-binding domains of vascular endothelial growth factor receptor 1 (VEGFR1), vascular endothelial growth factor receptor 2 (VEGFR2) and platelet-derived growth factor receptor beta (PDGFRß), which can therefore act as a decoy blocker for most of the VEGF and PDGF family members. Indeed, in cultured cells, the novel inhibitors suppressed the migration and proliferation of both vascular endothelial cells and smooth muscle cells, and abolished VEGFR2 and PDGFRß activation. Importantly, in a choroidal neovascularization model in vivo, the novel inhibitor inhibited ocular neovascularization more efficiently than the mono-inhibitors against VEGFR or PDGFR alone respectively. Mechanistically, a genome-wide microarray analysis unveiled that the novel inhibitor regulated unique sets of genes that were not regulated by the mono-inhibitors, further demonstrating the functional uniqueness and superiority of the novel inhibitor. Together, we show that the multi-targeted inhibitors that can block VEGFR1, VEGFR2 and PDGFRß simultaneously suppress pathological angiogenesis more efficiently than monotherapy, and may therefore have promising therapeutic value for the treatment of neovascular diseases.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Olho/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Proteínas Recombinantes de Fusão/uso terapêutico , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Olho/irrigação sanguínea , Olho/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transcriptoma/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(41): 14806-11, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267616

RESUMO

Blood vessel degeneration is critically involved in nearly all types of degenerative diseases. Therefore strategies to enhance blood vessel protection and survival are highly needed. In this study, using different animal models and cultured cells, we show that PDGF-CC is a potent vascular protective and survival factor. PDGF-CC deficiency by genetic deletion exacerbated blood vessel regression/degeneration in various animal models. Importantly, treatment with PDGF-CC protein not only increased the survival of retinal blood vessels in a model of oxygen-induced blood vessel regression but also markedly rescued retinal and blood vessel degeneration in a disease model of retinitis pigmentosa. Mechanistically, we revealed that heme oxygenase-1 (HMOX1) activity is critically required for the vascular protective/survival effect of PDGF-CC, because blockade of HMOX1 completely abolished the protective effect of PDGF-CC in vitro and in vivo. We further found that both PDGF receptors, PDGFR-ß and PDGFR-α, are required for the vasoprotective effect of PDGF-CC. Thus our data show that PDGF-CC plays a pivotal role in maintaining blood vessel survival and may be of therapeutic value in treating various types of degenerative diseases.


Assuntos
Heme Oxigenase-1/metabolismo , Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Degeneração Retiniana/enzimologia , Degeneração Retiniana/prevenção & controle , Vasos Retinianos/enzimologia , Vasos Retinianos/patologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Linfocinas/farmacologia , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Oxigênio , Fator de Crescimento Derivado de Plaquetas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Degeneração Retiniana/patologia , Vasos Retinianos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
Am J Physiol Lung Cell Mol Physiol ; 310(10): L940-54, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26993524

RESUMO

Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-ß and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/enzimologia , Pulmão/enzimologia , Linfocitose/enzimologia , Neuraminidase/metabolismo , Células A549 , Animais , Movimento Celular , Células Endoteliais/enzimologia , Endotélio Vascular/patologia , Feminino , Colágenos Fibrilares/metabolismo , Fibroblastos/enzimologia , Expressão Gênica , Células HEK293 , Humanos , Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Microvasos/patologia , Neuraminidase/genética
7.
J Biol Chem ; 289(13): 9121-35, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24550400

RESUMO

The highly sialylated vascular endothelial surface undergoes changes in sialylation upon adopting the migratory/angiogenic phenotype. We recently established endothelial cell (EC) expression of NEU1 sialidase (Cross, A. S., Hyun, S. W., Miranda-Ribera, A., Feng, C., Liu, A., Nguyen, C., Zhang, L., Luzina, I. G., Atamas, S. P., Twaddell, W. S., Guang, W., Lillehoj, E. P., Puché, A. C., Huang, W., Wang, L. X., Passaniti, A., and Goldblum, S. E. (2012) NEU1 and NEU3 sialidase activity expressed in human lung microvascular endothelia. NEU1 restrains endothelial cell migration whereas NEU3 does not. J. Biol. Chem. 287, 15966-15980). We asked whether NEU1 might regulate EC capillary-like tube formation on a Matrigel substrate. In human pulmonary microvascular ECs (HPMECs), prior silencing of NEU1 did not alter tube formation. Infection of HPMECs with increasing multiplicities of infection of an adenovirus encoding for catalytically active WT NEU1 dose-dependently impaired tube formation, whereas overexpression of either a catalytically dead NEU1 mutant, NEU1-G68V, or another human sialidase, NEU3, did not. NEU1 overexpression also diminished EC adhesion to the Matrigel substrate and restrained EC migration in a wounding assay. In HPMECs, the adhesion molecule, CD31, also known as platelet endothelial cell adhesion molecule-1, was sialylated via α2,6-linkages, as shown by Sambucus nigra agglutinin lectin blotting. NEU1 overexpression increased CD31 binding to Arachis hypogaea or peanut agglutinin lectin, indicating CD31 desialylation. In the postconfluent state, when CD31 ectodomains are homophilically engaged, NEU1 was recruited to and desialylated CD31. In postconfluent ECs, CD31 was desialylated compared with subconfluent cells, and prior NEU1 silencing completely protected against CD31 desialylation. Prior CD31 silencing and the use of CD31-null ECs each abrogated the NEU1 inhibitory effect on EC tube formation. Sialyltransferase 6 GAL-I overexpression increased α2,6-linked CD31 sialylation and dose-dependently counteracted NEU1-mediated inhibition of EC tube formation. These combined data indicate that catalytically active NEU1 inhibits in vitro angiogenesis through desialylation of its substrate, CD31.


Assuntos
Capilares/citologia , Células Endoteliais/metabolismo , Pulmão/irrigação sanguínea , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Antígenos CD/genética , Capilares/fisiologia , Adesão Celular , Movimento Celular , Células Endoteliais/citologia , Humanos , Camundongos , Neovascularização Fisiológica , Transporte Proteico , Sialiltransferases/genética
8.
Proc Natl Acad Sci U S A ; 107(27): 12216-21, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566880

RESUMO

The importance of identifying VEGF-independent pathways in pathological angiogenesis is increasingly recognized as a result of the emerging drug resistance to anti-VEGF therapies. PDGF-CC is the third member of the PDGF family discovered after more than two decades of studies on PDGF-AA and PDGF-BB. The biological function of PDGF-CC and the underlying cellular and molecular mechanisms remain largely unexplored. Here, using different animal models, we report that PDGF-CC inhibition by neutralizing antibody, shRNA, or genetic deletion suppressed both choroidal and retinal neovascularization. Importantly, we revealed that PDGF-CC targeting acted not only on multiple cell types important for pathological angiogenesis, such as vascular mural and endothelial cells, macrophages, choroidal fibroblasts and retinal pigment epithelial cells, but also on the expression of other important angiogenic genes, such as PDGF-BB and PDGF receptors. At a molecular level, we found that PDGF-CC regulated glycogen synthase kinase (GSK)-3beta phosphorylation and expression both in vitro and in vivo. Activation of GSK3beta impaired PDGF-CC-induced angiogenesis, and inhibition of GSK3beta abolished the antiangiogenic effect of PDGF-CC blockade. Thus, we identified PDGF-CC as an important candidate target gene for antiangiogenic therapy, and PDGF-CC inhibition may be of therapeutic value in treating neovascular diseases.


Assuntos
Linfocinas/genética , Neovascularização Patológica/genética , Fator de Crescimento Derivado de Plaquetas/genética , Interferência de RNA , Animais , Anticorpos Neutralizantes/farmacologia , Becaplermina , Western Blotting , Células Cultivadas , Embrião de Galinha , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/prevenção & controle , Feminino , Imunofluorescência , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Linfocinas/imunologia , Linfocinas/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/prevenção & controle , Fosforilação , Fator de Crescimento Derivado de Plaquetas/imunologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
J Cell Commun Signal ; 17(1): 151-165, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36284029

RESUMO

Although mitogen-inducible gene 6 (MIG6) is highly expressed in vascular endothelial cells, it remains unknown whether MIG6 affects vascular permeability. Here, we show for the first time a critical role of MIG6 in limiting vascular permeability. We unveil that genetic deletion of Mig6 in mice markedly increased VEGFA-induced vascular permeability, and MIG6 knockdown impaired endothelial barrier function. Mechanistically, we reveal that MIG6 inhibits VEGFR2 phosphorylation by binding to the VEGFR2 kinase domain 2, and MIG6 knockdown increases the downstream signaling of VEGFR2 by enhancing phosphorylation of PLCγ1 and eNOS. Moreover, MIG6 knockdown disrupted the balance between RAC1 and RHOA GTPase activation, leading to endothelial cell barrier breakdown and the elevation of vascular permeability. Our findings demonstrate an essential role of MIG6 in maintaining endothelial cell barrier integrity and point to potential therapeutic implications of MIG6 in the treatment of diseases involving vascular permeability. Xing et al. (2022) investigated the critical role of MIG6 in vascular permeability. MIG6 deficiency promotes VEGFA-induced vascular permeability via activation of PLCγ1-Ca2+-eNOS signaling and perturbation of the balance in RAC1/RHOA activation, resulting in endothelial barrier disruption.

10.
Signal Transduct Target Ther ; 8(1): 305, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591843

RESUMO

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Fator B de Crescimento do Endotélio Vascular , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Imunoterapia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
11.
Proc Natl Acad Sci U S A ; 106(15): 6152-7, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19369214

RESUMO

VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a "survival," rather than an "angiogenic" factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases.


Assuntos
Neovascularização Patológica , Fator B de Crescimento do Endotélio Vascular/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genoma , Membro Posterior/irrigação sanguínea , Isquemia/genética , Isquemia/metabolismo , Camundongos , Camundongos Knockout , Ratos , Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Regulação para Cima , Fator B de Crescimento do Endotélio Vascular/deficiência , Fator B de Crescimento do Endotélio Vascular/genética
12.
Oncol Lett ; 23(6): 192, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35527780

RESUMO

Retinoblastoma (RB) is a pediatric ocular malignancy that is initiated mostly by biallelic inactivation of the RB transcriptional corepressor 1 (RB1) tumor suppressor gene in the developing retina. Unlike the prevailing prediction based on multiple studies involving RB1 gene disruption in experimental models, human RB tumors have been demonstrated to possess a relatively stable genome, characterized by a low mutation rate and a few recurrent chromosomal alterations related to somatic copy number changes. This suggests that RB may harbor heightened genome maintenance mechanisms to counteract or compensate for the risk of massive genome instability, which can potentially be driven by the early RB1 loss as a tumor-initiating event. Although the genome maintenance mechanisms might have been evolved to promote RB cell survival by preventing lethal genomic defects, emerging evidence suggests that the dependency of RB cells on these mechanisms also exposes their unique vulnerability to chemotherapy, particularly when the genome maintenance machineries are tumor cell-specific. This review summarizes the genome maintenance mechanisms identified in RB, including findings on the roles of chromatin regulators in DNA damage response/repair and protein factors involved in maintaining chromosome stability and promoting survival in RB. In addition, advantages and challenges for exploiting these therapeutic vulnerabilities in RB are discussed.

14.
J Biol Chem ; 285(20): 15500-15510, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20231273

RESUMO

Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Linfocinas/metabolismo , Neovascularização Patológica/prevenção & controle , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Quinase 3 da Glicogênio Sintase/química , Glicogênio Sintase Quinase 3 beta , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Vasos Retinianos/patologia , Serina/metabolismo , Tirosina/metabolismo , Regulação para Cima
15.
Cell Death Dis ; 12(12): 1141, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887387

RESUMO

Aberrant and exclusive expression of chromatin regulators in retinoblastoma (RB) in contrast to terminally differentiated normal retina presents a unique opportunity of selective targeting for RB. However, precise roles of these chromatin regulators in RB development and their potential as therapeutic targets have not been defined thoroughly. Here, we report that targeting of disruptor of telomeric silencing 1-like (DOT1L), a histone H3K79 methyltransferase, sensitizes RB cells to chemotherapeutic drugs by impairing the DNA damage response and thereby potentiating apoptosis while it is largely inefficacious as a single-agent therapy. Moreover, we identified high mobility group AT-hook 2 (HMGA2) as a novel DOT1L target gene in RB cells and found that its aberrant expression is dependent on DOT1L. As HMGA2 depletion reduced CHK1 phosphorylation during DNA damage response and augmented the drug sensitivity in RB cells, our results suggested that DOT1L targeting has a dual role in chemosensitization of RB cells by directly interfering with the immediate involvement of DOT1L in early DNA damage response upon genotoxic insults and also by downregulating the expression of HMGA2 as a rather late effect of DOT1L inhibition. Furthermore, we provide the first preclinical evidence demonstrating that combined therapy with a DOT1L inhibitor significantly improves the therapeutic efficacy of etoposide in murine orthotopic xenografts of RB by rendering the response to etoposide more potent and stable. Taken together, these results support the therapeutic benefits of DOT1L targeting in combination with other chemotherapeutic agents in RB, with mechanistic insights into how DOT1L targeting can improve the current chemotherapy in an RB cell-selective manner.


Assuntos
Neoplasias da Retina , Retinoblastoma , Animais , Linhagem Celular Tumoral , Cromatina , Etoposídeo/farmacologia , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Metiltransferases/metabolismo , Camundongos , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética
16.
Front Cell Dev Biol ; 9: 686886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150781

RESUMO

Platelet-derived growth factor-D (PDGF-D) is highly expressed in immune cells. However, the potential role of PDGF-D in immune system remains thus far unclear. Here, we reveal a novel function of PDGF-D in activating both classical and alternative complement pathways that markedly increase chemokine and cytokine responses to promote macrophage polarization. Pharmacological targeting of the complement C3a receptor using SB290157 alleviated PDGF-D-induced neuroinflammation by blocking macrophage polarization and inhibited pathological choroidal neovascularization. Our study thus suggests that therapeutic strategies targeting both PDGF-D and the complement system may open up new possibilities for the treatment of neovascular diseases.

17.
Front Cell Dev Biol ; 9: 634242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33693003

RESUMO

The mitogen-inducible gene 6 (MIG6) is an adaptor protein widely expressed in vascular endothelial cells. However, it remains unknown thus far whether it plays a role in angiogenesis. Here, using comprehensive in vitro and in vivo model systems, we unveil a potent anti-angiogenic effect of MIG6 in retinal development and neovascularization and the underlying molecular and cellular mechanisms. Loss of function assays using genetic deletion of Mig6 or siRNA knockdown increased angiogenesis in vivo and in vitro, while MIG6 overexpression suppressed pathological angiogenesis. Moreover, we identified the cellular target of MIG6 by revealing its direct inhibitory effect on vascular endothelial cells (ECs). Mechanistically, we found that the anti-angiogenic effect of MIG6 is fulfilled by binding to SHC1 and inhibiting its phosphorylation. Indeed, SHC1 knockdown markedly diminished the effect of MIG6 on ECs. Thus, our findings show that MIG6 is a potent endogenous inhibitor of angiogenesis that may have therapeutic value in anti-angiogenic therapy.

18.
Mol Oncol ; 14(2): 329-346, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31782885

RESUMO

Identification of new genetic pathways or molecular targets that sensitize cancer cells to chemotherapeutic drugs may improve the efficacy of current chemotherapy. Here, we report that downmodulation of UHRF1 (ubiquitin-like with PHD and RING finger domains 1) in retinoblastoma (RB) cells increases the sensitivity to histone deacetylase (HDAC) inhibitors, augmenting apoptotic cell death. We found that UHRF1 depletion downregulates two redox-responsive genes GSTA4 (glutathione S-transferase α4) and TXN2 (thioredoxin-2) in RB cells, and increases the basal level of intracellular oxidative stress. Antioxidant treatment significantly reduced both basal and HDAC inhibitor-induced DNA damage and apoptosis in UHRF1-depleted cells. Knockdown of GSTA4 or TXN2 sensitized RB cells to HDAC inhibitors, demonstrating that GSTA4 and TXN2 play key roles in redox homeostasis in RB cells and the susceptibility to HDAC inhibitor treatment upon UHRF1 depletion. In human primary RB, GSTA4 and TXN2 proteins were found to be mostly elevated along with high UHRF1 expression. In addition to augmentation of apoptosis in UHRF1-depleted RB cells, we also show that UHRF1 downmodulation derepresses the expression of photoreceptor-specific genes in RB cells in cooperation with a HDAC inhibitor MS-275 and promotes neuron-like differentiation. However, further investigation revealed that the enhanced growth-inhibitory effects of MS-275 in UHRF1-depleted cells were still mainly due to robust apoptosis induction rather than differentiation-mediated growth arrest. Consistent with our findings, UHRF1 depletion in RB cells increased the therapeutic efficacy of MS-275 in murine orthotopic xenografts. These results provide a novel basis for potential benefits of UHRF1 targeting for RB treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Animais , Apoptose/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Imunoprecipitação da Cromatina , Feminino , Técnicas de Silenciamento de Genes , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxirredução , Estresse Oxidativo/genética , Células Fotorreceptoras de Vertebrados/metabolismo , RNA-Seq , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Retinoblastoma/genética , Retinoblastoma/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Res ; 66(4): 2089-97, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16489009

RESUMO

Histidine-rich glycoprotein (HRGP) is an abundant heparin-binding plasma protein that efficiently arrests growth and vascularization of mouse tumor models. We have shown that the antiangiogenic effect of HRGP is dependent on its histidine/proline-rich domain, which needs to be released from the mother protein to exert its effects. Here we identify a 35-amino-acid peptide, HRGP330, derived from the histidine/proline-rich domain as endowed with antiangiogenic properties in vitro and in vivo. The mechanism of action of HRGP330 involves subversion of focal adhesion function by disruption of integrin-linked kinase (ILK) and focal adhesion kinase (FAK) functions, inhibition of vascular endothelial growth factor (VEGF)-induced tyrosine phosphorylation of the FAK substrate alpha-actinin, and, as a consequence, an arrest in endothelial cell motility. The disturbed focal adhesion function is reflected in the ability of HRGP as well as of HRGP330 to prevent endothelial cell adhesion to vitronectin in a manner involving alpha(v)beta3 integrin. In conclusion, HRGP330, which we define as the minimal antiangiogenic domain of HRGP, exerts its effects through signal transduction targeting focal adhesions, thereby interrupting VEGF-induced endothelial cell motility.


Assuntos
Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas/farmacologia , Actinina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Endoteliais/citologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrina alfaVbeta3/metabolismo , Dados de Sequência Molecular , Paxilina/antagonistas & inibidores , Paxilina/biossíntese , Fragmentos de Peptídeos/química , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Mol Aspects Med ; 62: 12-21, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28965749

RESUMO

The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Doenças Cardiovasculares/genética , Regulação da Expressão Gênica , Humanos , Linfocinas/genética , Neovascularização Fisiológica , Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA