RESUMO
ConspectusOrganic semiconductors (OSCs) offer unique advantages with respect to mechanical flexibility, low-cost processing, and tunable properties. The optical and electrical properties of devices based on OSCs can be greatly improved when an OSC is coupled with graphene in a certain manner. Our research group has focused on using graphene as a growth template for OSCs and incorporating such high-quality heterostructures into optoelectronic devices. The idea is that graphene's atomically flat surface with a uniform sp2 carbon network can serve as a perfect quasi-epitaxial template for the growth of OSCs. In addition, OSC-graphene heterostructures benefit from graphene's unique characteristics, such as its high charge-carrier mobility, excellent optical transparency, and fascinating mechanical durability and flexibility.However, we have often found that OSC molecules assemble on graphene in unpredictable manners that vary from batch to batch. From observations of numerous research systems, we elucidated the mechanism underlying such poor repeatability and set out a framework to actually control the template effect of graphene on OSCs. In this Account, we not only present our scientific findings in this spectrum of areas but also convey our research scheme to the readers so that similar heterostructure complexes can be systematically studied.We began with experiments showing that the growth of OSCs on a graphene surface was driven by van der Waals interactions and is therefore sensitive to the cleanliness of the graphene surface. Nonetheless, we noted that, even on similarly clean graphene surfaces, the OSC thin film still varied with the underlying substrate. Thanks to the graphene-transfer method and in situ gating methods that we developed, we discovered that the decisive parameter for molecule-graphene interaction (and, hence, for the growth of OSCs on graphene) is the charge density in the graphene. Thus, to prepare a graphene template for high-quality graphene-OSC heterostructures, we controlled the charge density in the graphene to minimize the molecule-graphene interaction. Moreover, the possible charge transfer between OSC molecules and graphene, which induces additional molecule-graphene interactions, should also be taken into account. Eventually, we demonstrated a wide range of optoelectronic applications that benefitted from high-quality OSC-graphene heterostructures fabricated using our proof-of-concept systems.
RESUMO
Growth of organic semiconductor thin films on a two-dimensional template is affected by its properties and is not well understood. This growth process dictates a thin film's final morphology and crystal structure and is controlled by the interactions between ad-molecules and the template. Here, we report that the template's charge density determines the tuning of such interactions. We observe the dependence of pentacene nucleation on charge carrier density ng in graphene under an applied electric field and contact-doping and then deduce that the interaction energy EA between the ad-molecule and the graphene is related linearly to ng. This tunability of EA allows control of the pentacene crystals growth. We exploit these findings to demonstrate that graphene, in which ng is controlled, can be used to template pentacene thin films for improved optoelectronic properties, such as electrical conductivity and exciton diffusion length.
RESUMO
Although there is significant progress in the chemical vapor deposition (CVD) of graphene on Cu surfaces, the industrial application of graphene is not realized yet. One of the most critical obstacles that limit the commercialization of graphene is that CVD graphene contains too many vacancies or sp3 -type defects. Therefore, further investigation of the growth mechanism is still required to control the defects of graphene. During the growth of graphene, sublimation of the Cu catalyst to produce Cu vapor occurs inevitably because the process temperature is close to the melting point of Cu. However, to date few studies have investigated the effects of Cu vapor on graphene growth. In this study, how the Cu vapor produced by sublimation affects the chemical vapor deposition of graphene on Cu surfaces is investigated. It is found that the presence of Cu vapor enlarges the graphene grains and enhances the efficiency of the defect-healing of graphene by CH4 . It is elucidated that these effects are due to the removal by Cu vapor of carbon adatoms from the Cu surface and oxygen-functionalized carbons from graphene. Finally, these insights are used to develop a method for the synthesis of uniform and high-quality graphene.
RESUMO
Graphene is used as a growth template for van der Waals epitaxy of organic semiconductor (OSC) thin films. During the synthesis and transfer of chemical-vapor-deposited graphene on a target substrate, local inhomogeneities in the graphene-in particular, a nonuniform strain field in the graphene template-can easily form, causing poor morphology and crystallinity of the OSC thin films. Moreover, a strain field in graphene introduces a pseudo-electric field in the graphene. Here, the study investigates how the strain and strain-induced pseudo-electric field of a graphene template affect the self-assembly of π-conjugated organic molecules on it. Periodically strained graphene templates are fabricated by transferring graphene onto an array of nanospheres and then analyzed the growth and nucleation behavior of C60 thin films on the strained graphene templates. Both experiments and a numerical simulation demonstrated that strained graphene reduced the desorption energy between the graphene and the C60 molecules and thereby suppressed both nucleation and growth of the C60. A mechanism is proposed in which the strain-induced pseudo-electric field in graphene modulates the binding energy of organic molecules on the graphene.
RESUMO
The development of short-wave infrared photodetectors based on various two-dimensional (2D) materials has recently attracted attention because of the ability of these devices to operate at room temperature. Although van der Waals heterostructures of 2D materials with type-II band alignment have significant potential for use in short-wave infrared photodetectors, there is a need to develop photodetectors with high photoresponsivity. In this study, we investigated the photogating of graphene using a monolayer-MoS2/monolayer-MoTe2 van der Waals heterostructure. By stacking MoS2/MoTe2 on graphene, we fabricated a broadband photodetector that exhibited a high photoresponsivity (>100 mA/W) and a low dark current (60 nA) over a wide wavelength range (488−1550 nm).
RESUMO
Multilayer graphene has attracted significant attention because its physical properties can be tuned by stacking its layers in a particular configuration. To apply the intriguing properties of multilayer graphene in various optoelectronic or spintronic devices, it is essential to develop a synthetic method that enables the control of the stacking configuration. This review article presents the recent progress in the synthesis of multilayer graphene by chemical vapor deposition (CVD). First, we discuss the CVD of multilayer graphene, utilizing the precipitation or segregation of carbon atoms from metal catalysts with high carbon solubility. Subsequently, we present novel CVD approaches to yield uniform and thickness-controlled multilayer graphene, which goes beyond the conventional precipitation or segregation methods. Finally, we introduce the latest studies on the control of stacking configurations in bilayer graphene during CVD processes.
RESUMO
Achieving high mobility and bias stability is a challenging obstacle in the advancement of organic thin-film transistors (OTFTs). To this end, the fabrication of high-quality organic semiconductor (OSC) thin films is critical for OTFTs. Self-assembled monolayers (SAMs) have been used as growth templates for high-crystalline OSC thin films. Despite significant research progress in the growth of OSC on SAMs, a detailed understanding of the growth mechanism of the OSC thin films on a SAM template is lacking, which has limited its use. In this study, the effects of the structure (thickness and molecular packing) of SAM on the nucleation and growth behavior of the OSC thin films were investigated. We found that disordered SAM molecules assisted in the surface diffusion of the OSC molecules and resulted in a small nucleation density and large grain size of the OSC thin films. Moreover, a thick SAM with disordered SAM molecules on the top was found to be beneficial for the high mobility and bias stability of the OTFTs.
RESUMO
Controlling the growth behavior of organic semiconductors (OSCs) is essential because it determines their optoelectronic properties. In order to accomplish this, graphene templates with electronic-state tunability are used to affect the growth of OSCs by controlling the van der Waals interaction between OSC ad-molecules and graphene. However, in many graphene-molecule systems, the charge transfer between an ad-molecule and a graphene template causes another important interaction. This charge-transfer-induced interaction is never considered in the growth scheme of OSCs. Here, the effects of charge transfer on the formation of graphene-OSC heterostructures are investigated, using fullerene (C60) as a model compound. By in situ electrical doping of a graphene template to suppress the charge transfer between C60 ad-molecules and graphene, the layer-by-layer growth of a C60 film on graphene can be achieved. Under this condition, the graphene-C60 interface is free of Fermi-level pinning; thus, barristors fabricated on the graphene-C60 interface show a nearly ideal Schottky-Mott limit with efficient modulation of the charge-injection barrier. Moreover, the optimized C60 film exhibits a high field-effect electron mobility of 2.5 cm2 V-1 s-1. These results provide an efficient route to engineering highly efficient optoelectronic graphene-OSC hybrid material applications.
RESUMO
Realization of flexible electronics is an attractive challenge because of its great potential in many applications. However, the design of flexible and highly conductive metal electrodes has been a bottleneck for the fabrication of flexible devices because bulk metals are easily fractured when subjected to elongation or compression. Here, we demonstrate metal-ceramic nanolaminates as electrodes for flexible electronic devices. Insertion of ceramic layers, each with a thickness of a few nanometers, into an otherwise metal electrode significantly improved its strength and bending stability and only slightly reduced its electrical conductivity. Finally, we demonstrated that a touch screen panel fabricated with metal-ceramic nanolaminate electrodes was stable to 200 000 cycles of folding to a bending radius of 3 mm.
RESUMO
A novel method is described for the direct growth of patterned graphene on dielectric substrates by chemical vapor deposition (CVD) in the presence of Cu vapor and using a solid aromatic carbon source, 1,2,3,4-tetraphenylnapthalene (TPN), as the precursor. The UV/O3 treatment of the TPN film both crosslinks TPN and results in a strong interaction between the substrate and the TPN that prevents complete sublimation of the carbon source from the substrate during CVD. Substrate-adhered crosslinked TPN is successfully converted to graphene on the substrate without any organic contamination. The graphene synthesized by this method shows excellent mechanical and chemical stability. This process also enables the simultaneous patterning of graphene materials, which can thus be used as transparent electrodes for electronic devices. The proposed method for the synthesis directly on substrates of patterned graphene is expected to have wide applications in organic and soft hybrid electronics.
RESUMO
The synthesis of Bernal-stacked multilayer graphene over large areas is intensively investigated due to the value of this material's tunable electronic structure, which makes it promising for use in a wide range of optoelectronic applications. Multilayer graphene is typically formed via chemical vapor deposition onto a metal catalyst, such as Ni, a Cu-Ni alloy, or a Cu pocket. These methods, however, require sophisticated control over the process parameters, which limits the process reproducibility and reliability. Here, a new synthetic method for the facile growth of large-area Bernal-stacked multilayer graphene with precise layer control is proposed. A thin Ni film is deposited onto the back side of a Cu foil to induce controlled diffusion of carbon atoms through bulk Cu from the back to the front. The resulting multilayer graphene exhibits a 97% uniformity and a sheet resistance of 50 Ω sq-1 with a 90% transmittance after doping. The growth mechanism is elucidated and a generalized kinetic model is developed to describe Bernal-stacked multilayer graphene growth by the carbon atoms diffused through bulk Cu.
RESUMO
A new and simple strategy for enhancing the stability of organic solar cells (OSCs) was developed by using self-passivating metal top electrodes. Systematic investigations on O2 permeability of Al top electrodes revealed that the main pathways for oxidation-induced degradation could be greatly suppressed by simply controlling the nanoscale morphology of the Al electrode. The population of nanoscale pinholes among Al grains, which critically decided the diffusion of O2 molecules toward the Al-organic interfaces that are vulnerable to oxidation, was successfully regulated by rapidly depositing Al or promoting lateral growth among the Al grains, accompanied by increasing the deposition thickness. Our observations suggested that the stability of OSCs with conventional architectures might be greatly enhanced simply by controlling the fabrication conditions of the Al top electrode, without the aid of additional secondary treatments.
Assuntos
Eletrodos , Metais/química , Oxigênio/química , Energia Solar , DifusãoRESUMO
A synthetic approach for high-quality graphene on rough Cu surfaces via chemical vapor deposition is proposed. High-quality graphene is synthesized on rough Cu surfaces by inducing surface faceting of Cu surfaces prior to graphene growth. The electron mobility of synthesized graphene on the rough Cu surfaces is enhanced to 10 335 cm(2) V(-1) s(-1).
RESUMO
The polymer-supported transfer of chemical vapor deposition (CVD)-grown graphene provides large-area and high-quality graphene on a target substrate; however, the polymer and organic solvent residues left by the transfer process hinder the application of CVD-grown graphene in electronic and photonic devices. Here, we describe an inverse transfer method (ITM) that permits the simultaneous transfer and doping of graphene without generating undesirable residues by using polymers with different functional groups. Unlike conventional wet transfer methods, the polymer supporting layer used in the ITM serves as a graphene doping layer placed at the interface between the graphene and the substrate. Polymers bearing functional groups can induce n-doping or p-doping into the graphene depending on the electron-donating or -withdrawing characteristics of functional groups. Theoretical models of dipole layer-induced graphene doping offered insights into the experimentally measured change in the work function and the Dirac point of the graphene. Finally, the electrical properties of pentacene field effect transistors prepared using graphene electrodes could be enhanced by employing the ITM to introduce a polymer layer that tuned the work function of graphene. The versatility of polymer functional groups suggests that the method developed here will provide valuable routes to the development of applications of CVD-grown graphene in organic electronic devices.