Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38063712

RESUMO

We investigate the coherence properties of a transmission electron microscope by analyzing nano-diffraction speckles originating from bulk metallic glass. The spatial correlation function of the coherent diffraction patterns, obtained in the transmission geometry, reveals the highly coherent nature of the electron probe beam and its spatial dimension incident on the sample. Quantitative agreement between the measured speckle contrast and an analytical model yields estimates for the transverse and longitudinal coherence lengths of the source. We also demonstrate that the coherence can be controlled by changing the beam convergence angle. Our findings underscore the preservation of electron beam coherence throughout the electron optics, as evidenced by the high-contrast speckles observed in the scattering patterns of the amorphous system. This study paves the way for the application of advanced coherent diffraction methodologies to investigate local structures and dynamics occurring at atomic-length scales across a diverse range of materials.

2.
Chem Commun (Camb) ; 59(18): 2668, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36799462

RESUMO

Correction for 'Interfacial engineering of a Mo/Hf0.3Zr0.7O2/Si capacitor using the direct scavenging effect of a thin Ti layer' by Se Hyun Kim et al., Chem. Commun., 2021, 57, 12452-12455, https://doi.org/10.1039/D1CC04966F.

3.
ACS Appl Mater Interfaces ; 14(47): 53038-53047, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394301

RESUMO

High-precision artificial synaptic devices compatible with existing CMOS technology are essential for realizing robust neuromorphic hardware systems with reliable parallel analogue computation beyond the von Neumann serial digital computing architecture. However, critical issues related to reliability and variability, such as nonlinearity and asymmetric weight updates, have been great challenges in the implementation of artificial synaptic devices in practical neuromorphic hardware systems. Herein, a robust three-terminal two-dimensional (2D) MoS2 artificial synaptic device combined with a lithium silicate (LSO) solid-state electrolyte thin film is proposed. The rationally designed synaptic device exhibits excellent linearity and symmetry upon electrical potentiation and depression, benefiting from the reversible intercalation of Li ions into the MoS2 channel. In particular, extremely low cycle-to-cycle variations (3.01%) during long-term potentiation and depression processes over 500 pulses are achieved, causing statistical analogue discrete states. Thus, a high classification accuracy of 96.77% (close to the software baseline of 98%) is demonstrated in the Modified National Institute of Standards and Technology (MNIST) simulations. These results provide a future perspective for robust synaptic device architecture of lithium solid-state electrolytes stacked with 2D van der Waals layered channels for high-precision analogue neuromorphic computing systems.

4.
Chem Commun (Camb) ; 57(93): 12452-12455, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34710209

RESUMO

An antiferroelectric Mo/Hf0.3Zr0.7O2/SIOx/Si capacitor was engineered using the direct scavenging effect of a sputtered Ti sacrificial layer. Charge trapping could be mitigated with the oxidized TiO2 layer, and the endurance could be enhanced beyond 109 cycles, which is higher than that of the gate stack of ferroelectric field-effect-transistors by 3-4 orders of magnitude.

5.
Nat Commun ; 10(1): 961, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814502

RESUMO

Bioinspired ceramics with micron-scale ceramic "bricks" bonded by a metallic "mortar" are projected to result in higher strength and toughness ceramics, but their processing is challenging as metals do not typically wet ceramics. To resolve this issue, we made alumina structures using rapid pressureless infiltration of a zirconium-based bulk-metallic glass mortar that reactively wets the surface of freeze-cast alumina preforms. The mechanical properties of the resulting Al2O3 with a glass-forming compliant-phase change with infiltration temperature and ceramic content, leading to a trade-off between flexural strength (varying from 89 to 800 MPa) and fracture toughness (varying from 4 to more than 9 MPa·m½). The high toughness levels are attributed to brick pull-out and crack deflection along the ceramic/metal interfaces. Since these mechanisms are enabled by interfacial failure rather than failure within the metallic mortar, the potential for optimizing these bioinspired materials for damage tolerance has still not been fully realized.

6.
Sci Rep ; 9(1): 13140, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511574

RESUMO

Shape memory effect, the ability to recover a pre-deformed shape on heating, results from a reversible martensitic transformation between austenite and martensite phases. Here, we demonstrate a strategy of designing high-entropy alloys (HEAs) with high-temperature shape memory effect in the CrMnFeCoNi alloy system. First, we calculate the difference in Gibbs free energy between face-centered-cubic (FCC) and hexagonal-close-packed (HCP) phases, and find a substantial increase in thermodynamic equilibrium temperature between the FCC and HCP phases through composition tuning, leading to thermally- and stress-induced martensitic transformations. As a consequence, the shape recovery temperature in non-equiatomic CrMnFeCoNi alloys can be increased to 698 K, which is much higher than that of conventional shape memory alloys (SMAs) and comparable to that of B2-based multi-component SMAs containing noble metals (Pd, Pt, etc.) or refractory metals (Zr, Hf, etc.). This result opens a vast field of applications of HEAs as a novel class of cost-effective high-temperature SMAs.

7.
J Vet Sci ; 8(3): 283-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17679776

RESUMO

This study investigated the effects of the herd, cow parity, the insemination protocol and season on the incidence of pregnancy loss (PL) in dairy herds. Furthermore, we determined the downstream effects of PL on reproductive performance and its economic impact. The overall incidence rate of PL was 6.9% in 1,001 pregnant cows and its incidence peaked (p < 0.01) during the second trimester of gestation. GLIMMIX analysis revealed that cow parity was the important risk factor for the PL. The odds ratio showed that the likelihood of PL in cows with parities of 1 or 2 was decreased by 0.6 or 0.5 fold compared to the cows with a parity of 3 or higher. Following PL, the mean rate of endometritis was 23.2% and endometritis was more common (p < 0.05) when PL occurred during the third trimester than during the first and second trimesters. The mean culling rate was 46.4% and this did not differ with the period of PL. The overall mean intervals from PL to the first service and conception were 63.4 and 101.8 days, respectively. The mean interval from PL to first service was longer (p < 0.01) for cows with PL during the third trimester than for the cows with PL during the first and second trimesters. The economic loss resulting from each PL was estimated at approximately $2,333, and this was largely due to an extended calving interval and increased culling. These results suggest that cow parity affects the incidence of PL, which extends calving interval and causes severe economic loss of dairy herds.


Assuntos
Aborto Animal/epidemiologia , Doenças dos Bovinos/epidemiologia , Aborto Animal/economia , Animais , Bovinos , Doenças dos Bovinos/economia , Indústria de Laticínios/métodos , Endometrite/epidemiologia , Feminino , Incidência , Inseminação , Coreia (Geográfico)/epidemiologia , Paridade , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA