Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 578
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(9): 4674-4706, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38529583

RESUMO

High power conversion efficiency (PCE) and long-term stability are essential prerequisites for the commercialization of polymer solar cells (PSCs). Small-molecule acceptors (SMAs) are core materials that have led to recent, rapid increases in the PCEs of the PSCs. However, a critical limitation of the resulting PSCs is their poor long-term stability. Blend morphology degradation from rapid diffusion of SMAs with low glass transition temperatures (Tgs) is considered the main cause of the poor long-term stability of the PSCs. The recent emergence of oligomerized SMAs (OSMAs), composed of two or more repeating SMA units (i.e., dimerized and trimerized SMAs), has shown great promise in overcoming these challenges. This innovation in material design has enabled OSMA-based PSCs to reach impressive PCEs near 19% and exceptional long-term stability. In this review, we summarize the evolution of OSMAs, including their research background and recent progress in molecular design. In particular, we discuss the mechanisms for high PCE and stability of OSMA-based PSCs and suggest useful design guidelines for high-performance OSMAs. Furthermore, we reflect on the existing hurdles and future directions for OSMA materials towards achieving commercially viable PSCs with high PCEs and operational stabilities.

2.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856974

RESUMO

In this study, we examined the nanostructured molecular packing and orientations of poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) films formed on water for the application of nanotechnology-based organic electronic devices. First, the nanoscale molecule-substrate interaction between the polymer and water was modulated by controlling the alkyl side chain length in NDI-based copolymers. Increasing alkyl side chain lengths induced a nanomorphological transition from face-on to edge-on orientation, confirmed by molecular dynamics simulations revealing nanostructural behavior. Second, the nanoscale intermolecular interactions of P(NDI2OD-T2) were controlled by varying the volume ratio of the high-boiling-point additive solvent in the binary solvent blends. As the additive solvent ratio increased, the nanostructured molecular orientation of the P(NDI2OD-T2) films on water changed remarkably from edge-on to bimodal with more face-on crystallites, thereby affecting charge transport. Our finding provides essential insights for precise nanoscale morphological control on water substrates, enabling the formation of high-performance polymer films for organic electronic devices.

3.
Nat Prod Rep ; 41(8): 1294-1317, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38916377

RESUMO

Covering: up to December 2023Decalin-containing tetramic acid derivatives, especially 3-decalinoyltetramic acids (3-DTAs), are commonly found as fungal secondary metabolites. Numerous biological activities of this class of compounds, such as antibiotic, antiviral, antifungal, antiplasmodial, and antiprotozoal properties, have been the subject of ongoing research. For this reason, these molecules have attracted a lot of interest from the scientific community and various efforts including semi-synthesis, co-culturing with bacteria and biosynthetic gene sequencing have been made to obtain more derivatives. In this review, 3-DTAs are classified into four major groups based on the absolute configuration of the bicyclic decalin ring. Their biosynthetic pathways, various biological activities, and structure-activity relationship are then introduced.


Assuntos
Fungos , Pirrolidinonas , Relação Estrutura-Atividade , Fungos/química , Fungos/metabolismo , Pirrolidinonas/farmacologia , Pirrolidinonas/química , Pirrolidinonas/isolamento & purificação , Pirrolidinonas/metabolismo , Estrutura Molecular , Naftalenos/farmacologia , Naftalenos/química , Naftalenos/isolamento & purificação , Naftalenos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação
4.
Nat Prod Rep ; 41(8): 1318, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38984501

RESUMO

Correction for 'Biosynthesis, biological activities, and structure-activity relationships of decalin-containing tetramic acid derivatives isolated from fungi' by Hyun Woo Kim et al., Nat. Prod. Rep., 2024, https://doi.org/10.1039/d4np00013g.

5.
Antimicrob Agents Chemother ; 68(10): e0100624, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39207152

RESUMO

Antimicrobial resistance is extremely common in Mycoplasma genitalium, a frequent cause of urethritis in men and cervicitis, vaginitis, and pelvic inflammatory disease in women. Treatment of M. genitalium infections is difficult due to intrinsic and acquired resistance to many antibiotic classes. We undertook a program to identify novel antimicrobials with activity against M. genitalium from fungal natural products. Extracts of Ramularia coccinea contained a molecule with potent activity that was subsequently identified as fusidic acid, a fusidane-type antibiotic that has been in clinical use for decades outside the United States. We found that minimum inhibitory concentrations of fusidic acid ranged from 0.31 to 4 µg/mL among 17 M. genitalium strains including laboratory-passaged and low-passage clinical isolates. Time-kill data indicate that bactericidal killing occurs when M. genitalium is exposed to ≥10 µg/mL for 48 h, comparing favorably to serum concentrations obtained from typical loading dose regimens. Resistance to fusidic acid was associated with mutations in fusA consistent with the known mechanism of action in which fusidic acid inhibits protein synthesis by binding to elongation factor G. Interestingly, no mutants resistant to >10 µg/mL fusidic acid were obtained and a resistant strain containing a F435Y mutation in FusA was impaired for growth in vitro. These data suggest that fusidic acid may be a promising option for the treatment of M. genitalium infections.


Assuntos
Antibacterianos , Ácido Fusídico , Testes de Sensibilidade Microbiana , Mycoplasma genitalium , Mycoplasma genitalium/efeitos dos fármacos , Ácido Fusídico/farmacologia , Antibacterianos/farmacologia , Humanos , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Produtos Biológicos/farmacologia , Ascomicetos/efeitos dos fármacos , Feminino , Infecções por Mycoplasma/tratamento farmacológico , Infecções por Mycoplasma/microbiologia
6.
Small ; 20(34): e2400915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38597683

RESUMO

Hole transporting layers (HTLs), strategically positioned between electrode and light absorber, play a pivotal role in shaping charge extraction and transport in organic solar cells (OSCs). However, the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, with its hygroscopic and acidic nature, undermines the operational durability of OSC devices. Herein, an environmentally friendly approach is developed utilizing nickel acetate tetrahydrate (NiAc·4H2O) and [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz) as the NiAc·4H2O/2PACz HTL, aiming at overcoming the limitations posed by the conventional PEDOT:PSS one. Encouragingly, a remarkable power conversion efficiency (PCE) of 19.12% is obtained for the OSCs employing NiAc·4H2O/2PACz as the HTL, surpassing that of devices with the PEDOT:PSS HTL (17.59%), which is ranked among the highest ones of OSCs. This improvement is attributed to the appropriate work function, enhanced hole mobility, facilitated exciton dissociation efficiency, and lower recombination loss of NiAc·4H2O/2PACz-based devices. Furthermore, the NiAc·4H2O/2PACz-based OSCs exhibit superior operational stability compared to their PEDOT:PSS-based counterparts. Of significant note, the NiAc·4H2O/2PACz HTL demonstrates a broad generality, boosting the PCE of the PM6:PY-IT and PM6:Y6-based OSCs from 16.47% and 16.79% (with PEDOT:PSS-based analogs as HTLs) to 17.36% and 17.57%, respectively. These findings underscore the substantial potential of the NiAc·4H2O/2PACz HTL in advancing OSCs, offering improved performance and stability, thereby opening avenue for highly efficient and reliable solar energy harvesting technologies.

7.
Microvasc Res ; 155: 104698, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38801943

RESUMO

Angiogenesis is mainly regulated by the delivery of VEGF-dependent signaling to cells. However, the angiogenesis mechanism regulated by VEGF-induced miRNA is still not understood. After VEGF treatment in HUVECs, we screened the changed miRNAs through small-RNA sequencing and found VEGF-induced miR-4701-3p. Furthermore, the GFP reporter gene was used to reveal that TOB2 expression was regulated by miR-4701-3p, and it was found that TOB2 and miR-4701-3p modulation could cause angiogenesis in an in-vitro angiogenic assay. Through the luciferase assay, it was confirmed that the activation of the angiogenic transcription factor MEF2 was regulated by the suppression and overexpression of TOB2 and miR-4701-3p. As a result, MEF2 downstream gene mRNAs that induce angiogenic function were regulated. We used the NCBI GEO datasets to reveal that the expression of TOB2 and MEF2 was significantly changed in cardiovascular disease. Finally, it was confirmed that the expression of circulating miR-4701-3p in the blood of myocardial infarction patients was remarkably increased. In patients with myocardial infarction, circulating miR-4701-3p was increased regardless of age, BMI, and sex, and showed high AUC levels in specificity and sensitivity analysis (AUROC) (AUC = 0.8451, 95 % CI 0.78-0.90). Our data showed TOB2-mediated modulation of MEF2 and its angiogenesis by VEGF-induced miR-4701-3p in vascular endothelial cells. In addition, through bioinformatics analysis using GEO data, changes in TOB2 and MEF2 were revealed in cardiovascular disease. We suggest that circulating miR-4701-3p has high potential as a biomarker for myocardial infarction.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Fatores de Transcrição MEF2 , MicroRNAs , Neovascularização Fisiológica , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/genética , MicroRNAs/sangue , MicroRNAs/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Feminino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/genética , Transdução de Sinais , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Infarto do Miocárdio/diagnóstico , Células Cultivadas , Regulação da Expressão Gênica , Estudos de Casos e Controles , Pessoa de Meia-Idade , Bases de Dados Genéticas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Angiogênese
8.
J Gastroenterol Hepatol ; 39(9): 1924-1931, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38711168

RESUMO

BACKGROUND AND AIM: Transarterial chemoembolization (TACE) is one of the standard modalities used to treat unresectable hepatocellular carcinoma (HCC), but the effectiveness of TACE for treating patients with a solitary small (≤3 cm) HCC and well-preserved liver function has not been definitively established. This study aimed to determine the therapeutic impact of TACE in patients with these characteristics. METHODS: This multicenter (four university hospitals) retrospective cohort study analyzed the medical records of 250 patients with a solitary small (≤3 cm) HCC and Child-Turcotte-Pugh (CTP) class A liver function diagnosed over 10 years. Posttreatment outcomes, including overall survival (OS), recurrence-free survival (RFS), and adverse events, were assessed following TACE therapy. RESULTS: One hundred and thirty-eight of the 250 patients (55.2%) treated with TACE achieved complete remission (CR). Overall median OS was 77.7 months, and median OS was significantly longer in the CR group than in the non-CR group (89.1 vs. 58.8 months, P = 0.001). Median RFS was 19.1 months in the CR group. Subgroup analysis identified hypertension, an elevated serum albumin level, and achieving CR as significant positive predictors of OS, whereas diabetes, hepatitis c virus infection, and tumor size (>2 cm) were poor prognostic factors of OS. CONCLUSIONS: The study demonstrates the effectiveness of TACE as a viable alternative for treating solitary small (≤3 cm) HCC in CTP class A patients.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Quimioembolização Terapêutica/métodos , Quimioembolização Terapêutica/efeitos adversos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Estudos de Coortes , Taxa de Sobrevida , Adulto , Idoso de 80 Anos ou mais , Indução de Remissão
9.
J Nat Prod ; 87(8): 2081-2094, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39038494

RESUMO

Five new lipopeptaibols (1-5) and eight new 19-residue peptaibols (8-15) along with two known lipopeptaibols, lipovelutibols C (6) and D (7) were isolated from Trichoderma strigosum. The planar structures of the newly discovered peptaibols (1-5, 8-15) were elucidated using 1D and 2D NMR, and UPLC-MS/MS data. The absolute configurations for new peptaibols (1-5, 8-15) were elucidated using the advanced Marfey's method and GITC (2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate) derivatization. Through analysis of CD spectra, these peptabols were found to have right-handed helical conformations. While most of the new compounds were significantly more active than the positive control, 9, 10, 12, and 15 containing Ser and Leu at positions 10 and 11, respectively, were the most cytotoxic against MDA-MB-231, SNU449, SKOV3, DU145, and HCT116 cancer cell lines, and the 19-residue peptaibols were generally more potent than lipopeptaibols.


Assuntos
Peptaibols , Trichoderma , Peptaibols/farmacologia , Peptaibols/química , Humanos , Trichoderma/química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação
10.
J Nat Prod ; 87(8): 1994-2003, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39102454

RESUMO

Soil sustains human life by nourishing crops, storing food sources, and housing microbes, which may affect the nutrition and biosynthesis of secondary metabolites, some of which are used as drugs. To identify lead compounds for a new class of drugs, we collected soil-derived fungal strains from various environments, including urban areas. As various human pathogens are assumed to influence the biosynthetic pathways of metabolites in soil fungi, leading to the production of novel scaffolds, we focused our work on densely populated urban areas and tourist attractions. A soil-derived fungal extract library was screened against MDA-MB-231 cells to derive their cytotoxic activity. Notably, 10 µg/mL of the extract of Trichoderma guizhouense (DS9-1) was found to exhibit an inhibitory effect of 71%. Fractionation, isolation, and structure elucidation efforts led to the identification of nine new peptaibols, trichoguizaibols A-I (1-9), comprising 14 amino acid residues (14-AA peptaibols), and three new peptaibols, trichoguizaibols J-L (10-12), comprising 18 amino acid residues (18-AA peptaibols). The chemical structures of 1-12 were determined based on their 1D and 2D NMR spectra, HRESIMS, electronic circular dichroism data, and results of the advanced Marfey's method. The 18-AA peptaibols were found to exhibit cytotoxicity against MDA-MB-231, SK-Hep1, SKOV3, DU145, and HCT116 cells greater than that of the 14-AA peptaibols. Among these compounds, 10-12 exhibited potent sub-micromolar IC50 values. These results are expected to shed light on a new direction for developing novel scaffolds as anticancer agents.


Assuntos
Peptaibols , Microbiologia do Solo , Trichoderma , Humanos , Trichoderma/química , Peptaibols/farmacologia , Peptaibols/química , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
11.
BMC Vet Res ; 20(1): 24, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216988

RESUMO

BACKGROUND: Salinomycin, an antibiotic, have potential as a veterinary drug for fish due to its anti-parasitic activity against several fish parasites. Thus the residual levels of salinomycin in muscles of two significant aquaculture species in Korea, olive flounder and black rockfish, were analyzed using HPLC-MS-MS. RESULTS: The proper method to analyze the residual salinomycin in fish muscles using LC-MS-MS was settled and the method was validated according to CODEX guidelines. The residues in three distinct groups for two fish species were analyzed using the matrix match calibration curves at points of five different times following oral administration. After oral administration, salinomycin rapidly breaks down in both olive flounder and black rockfish. After 7th days, the average residue in all groups of two fish spp. decreased below limit of quantitation (LOQ). CONCLUSION: Due to low residue levels in fish muscles, salinomycin may therefore be a treatment that is safe for both fish and humans. This result could contribute to establishment of MRL (minimal residual limit) for approval of salinomycin for use in aquaculture.


Assuntos
Doenças dos Peixes , Linguado , Perciformes , Policetídeos de Poliéter , Piranos , Humanos , Animais , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/parasitologia , Peixes , Músculos/parasitologia , Administração Oral
12.
J Korean Med Sci ; 39(40): e311, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39435518

RESUMO

BACKGROUND: A clear and precise definition of the "intended use" in developing new medical devices can determine the success of entering the healthcare market. For this, practical collaboration between the clinical and engineering experts is necessary, and an appropriate tool is required for effective information collection and decision-making in the process. METHODS: The Korean Academy of Medical Sciences, in cooperation with the Korean Medical Device Development Fund, implemented the Healthcare Experts' Advisory Unit and Support (HAUS) program to match advisory clinical experts in medical device development projects. Three and five collaborative academic conferences were held in 2022 and 2023 to raise awareness of the HAUS program. In the consultation meeting, checklists were used to facilitate communications and satisfaction surveys were conducted afterward. Then, the results of the consultation meetings were compiled to build an integrated document. RESULTS: The HAUS program was conducted with a gradually increasing number of consultation sessions from 31 in 2021 to 128 in 2023. The medical device development teams (development teams) expressed a higher level of satisfaction (91.4% to 100%) compared to the advisors (clinical experts) (78.6% to 100%) across the survey items. Based on the experiences and observations of the HAUS consultation meetings, the "Clinical Unmet Needs-based Intended Use Establishment (CLUE) templates" were developed, which were purposes to improve communication efficiency and to support a systematic approach in establishing the intended use. The CLUE process comprises four main stages for processing: Stage 1, Initial Concept; Stage 2, Expert Consultation; Stage 3, Decision-making; and Stage 4, Intended Use. CONCLUSION: The HAUS program seemed to be helpful for the development teams by providing opinions of clinical experts. And the resultant product, the CLUE templates have been proposed to facilitate collaboration between the development teams and the advisors and to define robust clinical intended use.


Assuntos
Equipamentos e Provisões , República da Coreia , Humanos , Inquéritos e Questionários , Comitês Consultivos
13.
Int Orthop ; 48(9): 2383-2394, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38836871

RESUMO

PURPOSE: The results of past studies comparing percutaneous techniques with traditional open techniques for hallux valgus are controversial. Therefore, this study aimed to compare the radiologic and clinical outcomes of percutaneous and open distal chevron osteotomies. METHODS: Seventy-one patients with mild to severe hallux valgus deformity were randomized to undergo percutaneous distal chevron osteotomy (percutaneous group, n = 36) or open distal chevron osteotomy (open group, n = 35) between October 2019 and September 2020. Radiological and clinical outcomes were assessed preoperatively and postoperatively. Outcome measures included the foot and ankle outcome score, foot functional index, visual analogue scale (VAS) scores for pain, range of motion (ROM) of the first metatarsophalangeal (MTP) joint, hallux valgus angle, intermetatarsal angle, and first metatarsal shortening. Additionally, the first metatarsal declination angle was measured to evaluate sagittal malunion. RESULTS: The mean first metatarsal declination angle decreased significantly at 12 months postoperatively in both groups (p = 0.021 and p < 0.001 in the percutaneous and open groups, respectively), and the decrement was significantly greater in the open group (p = 0.033). The mean VAS score for pain on postoperative day one was 4.2 ± 1.9 and 5.3 ± 1.7 in the percutaneous and open groups, respectively (p = 0.019). The mean ROM of the first MTP joint did not change significantly after surgery, from 72.5 ± 7.5 preoperatively to 71.0 ± 9.5 at 12 months postoperatively in the percutaneous group (p = 0.215); however, it decreased significantly from 70.6 ± 7.3 preoperatively to 63.4 ± 10.4 at 12 months postoperatively in the open group (p < 0.001). There were no significant differences between the groups regarding other clinical outcomes. CONCLUSION: The percutaneous group showed a lower immediate pain level at postoperative day 1 and better ROM of the first MTP joint at 12 months postoperatively.


Assuntos
Hallux Valgus , Osteotomia , Dor Pós-Operatória , Amplitude de Movimento Articular , Humanos , Osteotomia/métodos , Feminino , Masculino , Amplitude de Movimento Articular/fisiologia , Pessoa de Meia-Idade , Hallux Valgus/cirurgia , Hallux Valgus/diagnóstico por imagem , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/diagnóstico , Estudos Prospectivos , Adulto , Medição da Dor , Resultado do Tratamento , Idoso
14.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928356

RESUMO

The topology of the basement membrane (BM) affects cell physiology and pathology, and BM thickening is associated with various chronic lung diseases. In addition, the topology of commercially available poly (ethylene terephthalate) (PET) membranes, which are used in preclinical in vitro models, differs from that of the human BM, which has a fibrous and elastic structure. In this study, we verified the effect of BM thickness on the differentiation of normal human bronchial epithelial (NHBE) cells. To evaluate whether the thickness of poly-ε-carprolactone (PCL) mesh affects the differentiation of NHBE cells, cells were grown on thin- (6-layer) and thick-layer (80-layer) meshes consisting of electrospun PCL nanofibers using an air-liquid interface (ALI) cell culture system. It was found that the NHBE cells formed a normal pseudostratified epithelium composed of ciliated, goblet, and basal cells on the thin-layer PCL mesh; however, goblet cell hyperplasia was observed on the thick-layer PCL mesh. Differentiated NHBE cells cultured on the thick-layer PCL mesh also demonstrated increased epithelial-mesenchymal transition (EMT) compared to those cultured on the thin-layer PCL mesh. In addition, expression of Sox9, nuclear factor (NF)-κB, and oxidative stress-related markers, which are also associated with goblet cell hyperplasia, was increased in the differentiated NHBE cells cultured on the thick-layer PCL mesh. Thus, the use of thick electrospun PCL mesh led to NHBE cells differentiating into hyperplastic goblet cells via EMT and the oxidative stress-related signaling pathway. Therefore, the topology of the BM, for example, thickness, may affect the differentiation direction of human bronchial epithelial cells.


Assuntos
Membrana Basal , Diferenciação Celular , Células Epiteliais , Poliésteres , Humanos , Poliésteres/química , Membrana Basal/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Nanofibras/química , Células Cultivadas , Brônquios/citologia , Brônquios/metabolismo
15.
J Biomed Sci ; 30(1): 26, 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088847

RESUMO

BACKGROUND: Although mRNA dysregulation can induce changes in mesenchymal stem cell (MSC) homeostasis, the mechanisms by which post-transcriptional regulation influences MSC differentiation potential remain understudied. PUMILIO2 (PUM2) represses translation by binding target mRNAs in a sequence-specific manner. METHODS: In vitro osteogenic differentiation assays were conducted using human bone marrow-derived MSCs. Alkaline phosphatase and alizarin red S staining were used to evaluate the osteogenic potential of MSCs. A rat xenograft model featuring a calvarial defect to examine effects of MSC-driven bone regeneration. RNA-immunoprecipitation (RNA-IP) assay was used to determine the interaction between PUM2 protein and Distal-Less Homeobox 5 (DLX5) mRNA. Ovariectomized (OVX) mice were employed to evaluate the effect of gene therapy for postmenopausal osteoporosis. RESULTS: Here, we elucidated the molecular mechanism of PUM2 in MSC osteogenesis and evaluated the applicability of PUM2 knockdown (KD) as a potential cell-based or gene therapy. PUM2 level was downregulated during MSC osteogenic differentiation, and PUM2 KD enhanced MSC osteogenic potential. Following PUM2 KD, MSCs were transplanted onto calvarial defects in 12-week-old rats; after 8 weeks, transplanted MSCs promoted bone regeneration. PUM2 KD upregulated the expression of DLX5 mRNA and protein and the reporter activity of its 3'-untranslated region. RNA-IP revealed direct binding of PUM2 to DLX5 mRNA. We then evaluated the potential of adeno-associated virus serotype 9 (AAV9)-siPum2 as a gene therapy for osteoporosis in OVX mice. CONCLUSION: Our findings suggest a novel role for PUM2 in MSC osteogenesis and highlight the potential of PUM2 KD-MSCs in bone regeneration. Additionally, we showed that AAV9-siPum2 is a potential gene therapy for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Camundongos , Animais , Osteogênese/genética , Regulação para Baixo , Diferenciação Celular , Regeneração Óssea/genética , RNA , RNA Mensageiro/metabolismo , Células Cultivadas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Cell Commun Signal ; 21(1): 257, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749552

RESUMO

BACKGROUND: G protein-coupled receptor heteromerization is believed to exert dynamic regulatory impact on signal transduction. CXC chemokine receptor 4 (CXCR4) and its ligand CXCL12, both of which are overexpressed in many cancers, play a pivotal role in metastasis. Likewise, lysophosphatidic acid receptor 1 (LPA1) is implicated in cancer cell proliferation and migration. In our preliminary study, we identified LPA1 as a prospective CXCR4 interactor. In the present study, we investigated in detail the formation of the CXCR4-LPA1 heteromer and characterized the unique molecular features and function of this heteromer. METHODS: We employed bimolecular fluorescence complementation, bioluminescence resonance energy transfer, and proximity ligation assays to demonstrate heteromerization between CXCR4 and LPA1. To elucidate the distinctive molecular characteristics and functional implications of the CXCR4-LPA1 heteromer, we performed various assays, including cAMP, BRET for G protein activation, ß-arrestin recruitment, ligand binding, and transwell migration assays. RESULTS: We observed that CXCR4 forms heteromers with LPA1 in recombinant HEK293A cells and the human breast cancer cell line MDA-MB-231. Coexpression of LPA1 with CXCR4 reduced CXCL12-mediated cAMP inhibition, ERK activation, Gαi/o activation, and ß-arrestin recruitment, while CXCL12 binding to CXCR4 remained unaffected. In contrast, CXCR4 had no impact on LPA1-mediated signaling. The addition of lysophosphatidic acid (LPA) further hindered CXCL12-induced Gαi/o recruitment to CXCR4. LPA or alkyl-OMPT inhibited CXCL12-induced migration in various cancer cells that endogenously express both CXCR4 and LPA1. Conversely, CXCL12-induced calcium signaling and migration were increased in LPAR1 knockout cells, and LPA1-selective antagonists enhanced CXCL12-induced Gαi/o signaling and cell migration in the parental MDA-MB-231 cells but not in LPA1-deficient cells. Ultimately, complete inhibition of cell migration toward CXCL12 and alkyl-OMPT was only achieved in the presence of both CXCR4 and LPA1 antagonists. CONCLUSIONS: The presence and impact of CXCR4-LPA1 heteromers on CXCL12-induced signaling and cell migration have been evidenced across various cell lines. This discovery provides crucial insights into a valuable regulatory mechanism of CXCR4 through heteromerization. Moreover, our findings propose a therapeutic potential in combined CXCR4 and LPA1 inhibitors for cancer and inflammatory diseases associated with these receptors, simultaneously raising concerns about the use of LPA1 antagonists alone for such conditions. Video Abstract.


Assuntos
Sinalização do Cálcio , Quimiocina CXCL12 , Receptores CXCR4 , Receptores de Ácidos Lisofosfatídicos , Humanos , Movimento Celular , Ligantes , Estudos Prospectivos
17.
J Nat Prod ; 86(8): 2031-2038, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37589086

RESUMO

Feature-based molecular networking analysis suggested the presence of naphthol tetramers in Daldinia childae 047219, the same species but a different strain from one used previously for the discovery of naphthol trimers promoting adiponectin synthesis. The new tetramers were composed of 5-methoxy-4-naphthol, each of which was connected to one another in various positions. Targeted isolation afforded six previously unreported naphthol tetramers (1-6) together with 13 known polyketides (7-19) including naphthol monomers, dimers, and trimers. Structures of the isolated compounds were established by using NMR and mass spectroscopic analysis. Nodulisporin A (13), nodulisporin B (14), and 1,1',3',3″-ternaphthalene-5,5',5″-trimethoxy-4,4',4″-triol (16) demonstrated anti-inflammatory activities against NO production, but the new compounds were less active.


Assuntos
Ascomicetos , Xylariales , Naftóis , Espectrometria de Massas em Tandem
18.
J Nat Prod ; 86(4): 947-957, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37042709

RESUMO

In an effort to activate silent biosynthetic gene clusters, Streptomyces samsunensis DSM42010, a producer of geldanamycin, was cultured at four different pHs (4.5, 5.4, 6.6, and 7.4). An acidic culture condition (pH 5.4) was selected for a chemical investigation since S. samsunensis showed a different metabolic profile compared to when it was cultured under other conditions. Seven new (1-7) and four known (8-11) compounds were isolated from these cultures. The structures of the isolated compounds were determined by spectroscopic techniques and chemical derivatization. Relative and absolute configurations of the new compounds (1-5) were established using JBCA, PGME method, advanced Marfey's method, modified Mosher's method, and comparison of observed and calculated ECD data. Interestingly, compounds 1-3 were truncated versions of geldanamycin, and compound 4 was also deduced to originate from geldanamycin. Compound 5 was composed of 3-methyltyrosine and 6-hydroxy-2,4-hexadienoic acid connected through an amide bond. Compounds 6 and 7 were dihydrogenated forms of geldanamycin with a hydroxy substitution. It is possible that culturing this strain under acidic conditions interfered to some degree with the geldanamycin polyketide synthase, leading to production of truncated versions as well as analogues of geldanamycin. Compounds 1, 8, and 9 showed significant antivirulence activity, inhibiting production of α-toxin by methicillin-resistant Staphylococcus aureus without growth attenuation and global regulatory inhibition; compounds 1, 8, and 9 may become promising α-toxin-specific antivirulence leads with less risk of resistance development.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Streptomyces , Benzoquinonas , Streptomyces/química
19.
J Nat Prod ; 86(6): 1596-1605, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37276438

RESUMO

Xanthoquinodins make up a distinctive class of xanthone-anthraquinone heterodimers reported as secondary metabolites from several fungal species. Through a collaborative multi-institutional screening program, a fungal extract prepared from a Trichocladium sp. was identified that exhibited strong inhibitory effects against several human pathogens (Mycoplasma genitalium, Plasmodium falciparum, Cryptosporidium parvum, and Trichomonas vaginalis). This report focuses on one of the unique samples that exhibited a desirable combination of biological effects: namely, it inhibited all four test pathogens and demonstrated low levels of toxicity toward HepG2 (human liver) cells. Fractionation and purification of the bioactive components and their congeners led to the identification of six new compounds [xanthoquinodins NPDG A1-A5 (1-5) and B1 (6)] as well as several previously reported natural products (7-14). The chemical structures of 1-14 were determined based on interpretation of their 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) data. Biological testing of the purified metabolites revealed that they possessed widely varying levels of inhibitory activity against a panel of human pathogens. Xanthoquinodins A1 (7) and A2 (8) exhibited the most promising broad-spectrum inhibitory effects against M. genitalium (EC50 values: 0.13 and 0.12 µM, respectively), C. parvum (EC50 values: 5.2 and 3.5 µM, respectively), T. vaginalis (EC50 values: 3.9 and 6.8 µM, respectively), and P. falciparum (EC50 values: 0.29 and 0.50 µM, respectively) with no cytotoxicity detected at the highest concentration tested (HepG2 EC50 > 25 µM).


Assuntos
Anti-Infecciosos , Criptosporidiose , Cryptosporidium , Fungos Mitospóricos , Humanos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Estrutura Molecular
20.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446261

RESUMO

Plasmodium vivax is the most widespread cause of malaria, especially in subtropical and temperate regions such as Asia-Pacific and America. P. vivax lactate dehydrogenase (PvLDH), an essential enzyme in the glycolytic pathway, is required for the development and reproduction of the parasite. Thus, LDH from these parasites has garnered attention as a diagnostic biomarker for malaria and as a potential molecular target for developing antimalarial drugs. In this study, we prepared a transformed Escherichia coli strain for the overexpression of PvLDH without codon optimization. We introduced this recombinant plasmid DNA prepared by insertion of the PvLDH gene in the pET-21a(+) expression vector, into the Rosetta(DE3), an E. coli strain suitable for eukaryotic protein expression. The time, temperature, and inducer concentration for PvLDH expression from this E. coli Rosetta(DE3), containing the original PvLDH gene, were optimized. We obtained PvLDH with a 31.0 mg/L yield and high purity (>95%) from this Rosetta(DE3) strain. The purified protein was characterized structurally and functionally. The PvLDH expressed and purified from transformed bacteria without codon optimization was successfully demonstrated to exhibit its potential tetramer structure and enzyme activity. These findings are expected to provide valuable insights for research on infectious diseases, metabolism, diagnostics, and therapeutics for malaria caused by P. vivax.


Assuntos
Malária Vivax , Malária , Humanos , Plasmodium vivax/genética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/química , Escherichia coli/genética , Malária Vivax/parasitologia , Malária/genética , Códon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA