RESUMO
In myotonia, reduced Cl- conductance of the mutated ClC-1 channels causes hindered muscle relaxation after forceful voluntary contraction due to muscle membrane hyperexcitability. Repetitive contraction temporarily decreases myotonia, a phenomena called "warm up." The underlying mechanism for the reduction of hyperexcitability in warm-up is currently unknown. Since potassium displacement is known to reduce excitability in, for example, muscle fatigue, we characterized the role of potassium in native myotonia congenita (MC) muscle. Muscle specimens of ADR mice (an animal model for low gCl- conductance myotonia) were exposed to increasing K+ concentrations. To characterize functional effects of potassium ion current, the muscle of ADR mice was exposed to agonists and antagonists of the big conductance Ca2+-activated K+ channel (BK) and the voltage-gated Kv7 channel. Effects were monitored by functional force and membrane potential measurements. By increasing [K+]0 to 5 mM, the warm-up phenomena started earlier and at [K+]0 7 mM only weak myotonia was detected. The increase of [K+]0 caused a sustained membrane depolarization accompanied with a reduction of myotonic bursts in ADR mice. Retigabine, a Kv7.2-Kv7.5 activator, dose-dependently reduced relaxation deficit of ADR myotonic muscle contraction and promoted the warm-up phenomena. In vitro results of this study suggest that increasing potassium conductivity via activation of voltage-gated potassium channels enhanced the warm-up phenomena, thereby offering a potential therapeutic treatment option for myotonia congenita.
Assuntos
Canais de Cloreto/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Miotonia Congênita/metabolismo , Potássio/metabolismo , Animais , Cloretos/metabolismo , Canais de Potássio KCNQ/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Potenciais da Membrana , Camundongos , Contração Muscular , Mutação , Miotonia Congênita/genética , Miotonia Congênita/fisiopatologia , Bloqueadores dos Canais de Potássio/farmacologiaRESUMO
The original article contains an error during online publication. Table 2 was included during production round and now deleted. The Original article has been corrected.
RESUMO
KEY POINTS: During myotonia congenita, reduced chloride (Cl- ) conductance results in impaired muscle relaxation and increased muscle stiffness after forceful voluntary contraction. Repetitive contraction of myotonic muscle decreases or even abolishes myotonic muscle stiffness, a phenomenon called 'warm up'. Pharmacological inhibition of low Cl- channels by anthracene-9-carboxylic acid in muscle from mice and ADR ('arrested development of righting response') muscle from mice showed a relaxation deficit under physiological conditions compared to wild-type muscle. At increased osmolarity up to 400 mosmol L-1 , the relaxation deficit of myotonic muscle almost reached that of control muscle. These effects were mediated by the cation and anion cotransporter, NKCC1, and anti-myotonic effects of hypertonicity were at least partly antagonized by the application of bumetanide. ABSTRACT: Low chloride-conductance myotonia is caused by mutations in the skeletal muscle chloride (Cl- ) channel gene type 1 (CLCN1). Reduced Cl- conductance of the mutated channels results in impaired muscle relaxation and increased muscle stiffness after forceful voluntary contraction. Exercise decreases muscle stiffness, a phenomena called 'warm up'. To gain further insight into the patho-mechanism of impaired muscle stiffness and the warm-up phenomenon, we characterized the effects of increased osmolarity on myotonic function. Functional force and membrane potential measurements were performed on muscle specimens of ADR ('arrested development of righting response') mice (an animal model for low gCl- conductance myotonia) and pharmacologically-induced myotonia. Specimens were exposed to solutions of increasing osmolarity at the same time as force and membrane potentials were monitored. In the second set of experiments, ADR muscle and pharmacologically-induced myotonic muscle were exposed to an antagonist of NKCC1. Upon osmotic stress, ADR muscle was depolarized to a lesser extent than control wild-type muscle. High osmolarity diminished myotonia and facilitated the warm-up phenomenon as depicted by a faster muscle relaxation time (T90/10 ). Osmotic stress primarily resulted in the activation of the NKCC1. The inhibition of NKCC1 with bumetanide prevented the depolarization and reversed the anti-myotonic effect of high osmolarity. Increased osmolarity decreased signs of myotonia and facilitated the warm-up phenomenon in different in vitro models of myotonia. Activation of NKCC1 activity promotes warm-up and reduces the number of contractions required to achieve normal relaxation kinetics.
Assuntos
Miotonia Congênita/fisiopatologia , Concentração Osmolar , Animais , Bumetanida/farmacologia , Modelos Animais de Doenças , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/fisiologiaRESUMO
Mutations that disrupt the TBC1D24 presynaptic protein have been implicated in various neurological disorders including epilepsy, chronic encephalopathy, DOORS (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures) syndrome, nonsyndromic hearing loss, and myoclonus. We present the case of a 22-month-old male with infantile-onset paroxysmal episodes of facial and limb myoclonus. The episodes were linked to biallelic variants in exon 2 of the TBC1D24 gene that lead to amino acid changes (c.304C >T/p.Pro102Ser and c.410T > C/p.Val137Ala), each variant being inherited from a parent. Follow-up imaging in adolescence revealed widened right cerebellar sulci. We discuss the evolving landscape of TBC1D24 associated phenotypes; this case adds to a growing body of evidence linking this gene to movement disorders in children.
Assuntos
Ataxia/diagnóstico , Ataxia/genética , Proteínas Ativadoras de GTPase/genética , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Idade de Início , Ataxia/complicações , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Lactente , Masculino , Transtornos dos Movimentos/complicações , MutaçãoRESUMO
Purpose To determine whether altered sodium (Na(+)) and chloride (Cl(-)) homeostasis can be visualized in periodic paralyses by using 7-T sodium 23 ((23)Na) and chlorine 35 ((35)Cl) magnetic resonance (MR) imaging. Materials and Methods Institutional review board approval and informed consent of all participants were obtained. (23)Na (repetition time msec/echo time msec, 160/0.35) and (35)Cl (40/0.6) MR imaging of both lower legs was performed with a 7-T whole-body system in patients with genetically confirmed hypokalemic periodic paralysis (Cav1.1-R1239H mutation, n = 5; Cav1.1-R528H mutation, n = 8) and Andersen-Tawil syndrome (n = 3) and in 16 healthy volunteers. Additionally, each participant underwent 3-T proton MR imaging on the same day by using T1-weighted, short-tau inversion-recovery, and Dixon-type sequences. Muscle edema was assessed on short-tau inversion-recovery images, fatty degeneration was assessed on T1-weighted images, and muscular fat fraction was quantified with Dixon-type imaging. Na(+) and Cl(-) were quantified in the soleus muscle by using three phantoms that contained 10-, 20-, and 30-mmol/L NaCl solution and 5% agarose gel as a reference. Parametric data for all subpopulations were tested by using one-way analysis of variance with the Dunnett test, and correlations were assessed with the Spearman rank correlation coefficient. Results Median muscular (23)Na concentration was higher in patients with Cav1.1-R1239H (34.7 mmol/L, P < .001), Cav1.1-R528H (32.0 mmol/L, P < .001), and Kir2.1 (24.3 mmol/L, P = .035) mutations than in healthy volunteers (19.9 mmol/L). Median muscular normalized (35)Cl signal intensity was higher in patients with Cav1.1-R1239H (27.6, P < .001) and Cav1.1-R528H (23.6, P < .001) than in healthy volunteers (12.6), but not in patients with the Kir2.1 mutation (14.3, P = .517). When compared with volunteers, patients with Cav1.1-R1239H and Cav1.1-R528H showed increased muscular edema (P < .001 and P = .003, respectively) and muscle fat fraction (P < .001 and P = .017, respectively). Conclusion With 7-T MR imaging, changes of Na(+) and Cl(-) homeostasis can be visualized in periodic paralyses and are most pronounced in the severe phenotype Cav1.1-R1239H, with up to daily paralytic episodes. (©) RSNA, 2016 An earlier incorrect version of this article appeared online. This article was corrected on April 18, 2016.
Assuntos
Edema/diagnóstico por imagem , Paralisia Periódica Hipopotassêmica/diagnóstico por imagem , Perna (Membro)/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tecido Adiposo/diagnóstico por imagem , Adulto , Idoso , Estudos de Casos e Controles , Cloro , Feminino , Humanos , Paralisia Periódica Hipopotassêmica/genética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Mutação , Imagens de Fantasmas , Isótopos de SódioRESUMO
OBJECTIVE: To examine rare KCNJ18 variations recently reported to cause sporadic and thyrotoxic hypokalaemic periodic paralysis (TPP). METHODS: We sequenced KCNJ18 in 474 controls (400 Caucasians, 74 male Asians) and 263 unrelated patients with periodic paralysis (PP), including 30 patients with TPP without mutations in established PP genes. RESULTS: In 10 patients without TPP, we identified 9 heterozygous, novel variations (c.-3G>A, L15S, R81C, E273X, T309I, I340T, N365S, G394R, R401W) and a questionable heterozygous causative R399X stop variant. Studies on 40 relatives of these 10 patients showed that none of the variants were de novo in the patients and that R399X occurred in 3 non-affected relatives. Most affected amino acids lacked conservation and several clinically affected relatives did not carry the patient's variant. T309I, however, could be pathogenic under the pre-requisite of strongly reduced penetrance in females. Of the controls, 17 revealed 12 novel rare variants including the heterozygous E273X stop variant in three individuals. CONCLUSIONS: Our study shows many different, rare KCNJ18 alterations in patients as well as controls. Only perhaps one meets the requirements of a disease-causing mutation. Therefore, KCNJ18 alterations are seldom pathogenic. Additional studies are required before patients with PP can be genetically diagnosed on the basis of a KCNJ18 variant alone.
Assuntos
Paralisia Periódica Hipopotassêmica/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adolescente , Adulto , Substituição de Aminoácidos/genética , Povo Asiático , Criança , Sequência Conservada , DNA/genética , Feminino , Variação Genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Penetrância , Adulto JovemRESUMO
Introduction Familial hemiplegic migraine (FHM) is a rare autosomal dominant subtype of migraine with aura. The FHM3 subtype is caused by mutations in SCN1A, which is also the most frequent epilepsy gene encoding the voltage-gated Na+ channel NaV1.1. The aim of this study was to explore the clinical, genetic and pathogenetic features of a pure FHM3 family. Methods A three-generation family was enrolled in this study for genetic testing and assessment of clinical features. Whole cell patch-clamp was performed to determine the functions of identified mutant NaV1.1 channels, which were transiently expressed in human tsA201 cells together with ß1 and ß2 subunits. Results and conclusions We identified a novel SCN1A (p.Leu1624Pro) mutation in a pure FHM family with notably early-onset attacks at mean age of 7. L1624P locates in S3 of domain IV, the same domain as two of four known pure FHM3 mutations. Compared to WT channels, L1624P displayed an increased threshold-near persistent current in addition to other gain-of-function features such as: a slowing of fast inactivation, a positive shift in steady-state inactivation, a faster recovery and higher channel availability during repetitive stimulation. Similar to the known FHM3 mutations, this novel mutation predicts hyperexcitability of GABAergic inhibitory neurons.
Assuntos
Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Enxaqueca com Aura/diagnóstico , Enxaqueca com Aura/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Criança , Feminino , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , LinhagemRESUMO
INTRODUCTION: Two previously reported Norwegian patients with painful muscle cramps and giant myotonic discharges were genotyped and compared with those of members of 21 families harboring the same mutation. METHODS: Using primers specific for SCN4A and CLCN1, the DNA of the Norwegian family members was amplified and bidirectionally sequenced. Clinical and neurophysiological features of other families harboring the same mutation were studied. RESULTS: A G1306A mutation in the Nav1.4 voltage-gated sodium channel of skeletal muscle was identified. This mutation is known to cause myotonia fluctuans. No giant myotonic discharges or painful muscle cramps were found in the other G1306A families. CONCLUSIONS: Ephaptic transmission between neighboring muscle fibers may not only cause the unusual size of the myotonic discharges in this family, but also a more severe type of potassium-aggravated myotonia than myotonia fluctuans.
Assuntos
Potencial Evocado Motor/genética , Saúde da Família , Cãibra Muscular/complicações , Cãibra Muscular/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adulto , Eletromiografia , Feminino , Humanos , Pessoa de Meia-IdadeRESUMO
Hypokalaemic periodic paralysis is typically associated with mutations of voltage sensor residues in calcium or sodium channels of skeletal muscle. To date, causative sodium channel mutations have been studied only for the two outermost arginine residues in S4 voltage sensor segments of domains I to III. These mutations produce depolarization of skeletal muscle fibres in response to reduced extracellular potassium, owing to an inward cation-selective gating pore current activated by hyperpolarization. Here, we describe mutations of the third arginine, R3, in the domain III voltage sensor i.e. an R1135H mutation which was found in two patients in separate families and a novel R1135C mutation identified in a third patient in another family. Muscle fibres from a patient harbouring the R1135H mutation showed increased depolarization tendency at normal and reduced extracellular potassium compatible with the diagnosis. Additionally, amplitude and rise time of action potentials were reduced compared with controls, even for holding potentials at which all NaV1.4 are fully recovered from inactivation. These findings may be because of an outward omega current activated at positive potentials. Expression of R1135H/C in mammalian cells indicates further gating defects that include significantly enhanced entry into inactivation and prolonged recovery that may additionally contribute to action potential inhibition at the physiological resting potential. After S4 immobilization in the outward position, mutant channels produce an inward omega current that most likely depolarizes the resting potential and produces the hypokalaemia-induced weakness. Gating current recordings reveal that mutations at R3 inhibit S4 deactivation before recovery, and molecular dynamics simulations suggest that this defect is caused by disrupted interactions of domain III S2 countercharges with S4 arginines R2 to R4 during repolarization of the membrane. This work reveals a novel mechanism of disrupted S4 translocation for hypokalaemic periodic paralysis mutations at arginine residues located below the gating pore constriction of the voltage sensor module.
Assuntos
Paralisia Periódica Hipopotassêmica/genética , Paralisia Periódica Hipopotassêmica/fisiopatologia , Músculo Esquelético/fisiopatologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Potenciais de Ação/genética , Adolescente , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Linhagem , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Adulto JovemRESUMO
PURPOSE: To implement chlorine 35 ((35)Cl) magnetic resonance (MR) at a 7-T whole-body MR system and evaluate its feasibility for imaging humans. MATERIALS AND METHODS: All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Seven examinations each of brain and muscle in healthy volunteers and four examinations of patients were performed. Two patients with histologically confirmed glioblastoma multiforme underwent brain imaging. (35)Cl MR and (35)Cl inversion-recovery (IR) MR were performed. Two patients with genetically confirmed hypokalemic periodic paralysis underwent calf muscle imaging. Seven multiecho sequences (acquisition time, 5 minutes; voxel dimension, 11 mm(3)) were applied to determine transverse relaxation time as affected by magnetic field heterogeneity (T2*) and chlorine concentration. (35)Cl and sodium 23 ((23)Na) MR were conducted with a 7-T whole-body MR system. (35)Cl longitudinal relaxation time (T1) and T2* of healthy human brain and muscle were determined with a three-dimensional density-adapted-projection reconstruction technique to achieve short echo times and high signal-to-noise ratio (SNR) efficiency. A nonlinear least squares routine and mono- (T1) and biexponential (T2*) models were used for curve fitting. RESULTS: Phantom imaging revealed 15-fold lower SNR and much shorter relaxation times for (35)Cl than (23)Na. In vivo T2* was biexponential and extremely short. Monoexponential fits of T1 revealed 9.2 and 4.0 milliseconds ± 0.7 (standard deviation) for brain and muscle, respectively. In glioblastoma tissue, increased Cl(-) concentrations and increased Cl(-) IR signal intensities were detected. Voxel dimension and acquisition time, respectively, were 6 mm(3) and 9 minutes 45 seconds ((35)Cl MR) and 10 mm(3) and 10 minutes ((35)Cl IR MR). In patients with hypokalemic periodic paralysis versus healthy volunteers, Cl(-) and Na(+) concentrations were increased. Cl(-) concentration of muscle could be determined (voxel size, 11 mm(3); total acquisition time, 35 minutes). CONCLUSION: MR at 7 T enables in vivo imaging of (35)Cl in human brain and muscle in clinically feasible acquisition times (10-35 minutes) and voxel volumes (0.2-1.3 cm(3)). Pathophysiological changes of Cl(-) homeostasis due to cancer or muscular ion channel disease can be visualized.
Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico , Cloro , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Meios de Contraste , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Compostos Organometálicos , Imagens de Fantasmas , Razão Sinal-Ruído , SódioRESUMO
Centronuclear myopathy (CNM) is a rare hereditary myopathy characterized by centrally located muscle fiber nuclei. Mutations in the dynamin 2 (DNM2) gene are estimated to account for about 50 % of CNM cases. Electromyographic recordings in CNM may show myopathic motor unit potentials without spontaneous activity at rest. Myotonic discharges, a distinctive electrical activity caused by membrane hyperexcitability, are characteristic of certain neuromuscular disorders. Such activity has been reported in only one CNM case without a known genetic cause. We sequenced the DNM2 gene and the genes associated with myotonia (CLCN1, SCN4A, DMPK and ZNF9) in a sporadic adult patient with CNM and myotonic discharges. Sequencing the entire coding region and exon-intron boundaries revealed a heterozygous c.1106g-a substitution in exon 8, resulting in a R369Q change in the DNM2. Sequencing the CLCN1, SCN4A, DMPK and ZNF9 genes ruled out mutations in these genes. This is the first report of DNM2-related CNM presenting with myotonia. The diagnosis of CNM should be considered in patients with myotonic discharges of an unknown cause.
Assuntos
Dinamina II/genética , Miopatias Congênitas Estruturais/complicações , Miopatias Congênitas Estruturais/genética , Miotonia/complicações , Miotonia/genética , Adulto , Sequência de Bases , Canais de Cloreto/genética , Análise Mutacional de DNA , Eletromiografia , Feminino , Humanos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Miotonia/patologia , Miotonia/fisiopatologia , Miotonina Proteína Quinase/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Proteínas de Ligação a RNA/genéticaRESUMO
We studied a two-generation family presenting with conditions that included progressive permanent weakness, myopathic myopathy, exercise-induced contracture before normokalaemic periodic paralysis or, if localized to the tibial anterior muscle group, transient compartment-like syndrome (painful acute oedema with neuronal compression and drop foot). 23Na and 1H magnetic resonance imaging displayed myoplasmic sodium overload, and oedema. We identified a novel familial Ca(v)1.1 calcium channel mutation, R1242G, localized to the third positive charge of the domain IV voltage sensor. Functional expression of R1242G in the muscular dysgenesis mouse cell line GLT revealed a 28% reduced central pore inward current and a -20 mV shift of the steady-state inactivation curve. Both changes may be at least partially explained by an outward omega (gating pore) current at positive potentials. Moreover, this outward omega current of 27.5 nS/nF may cause the reduction of the overshoot by 13 mV and slowing of the upstroke of action potentials by 36% that are associated with muscle hypoexcitability (permanent weakness and myopathic myopathy). In addition to the outward omega current, we identified an inward omega pore current of 95 nS/nF at negative membrane potentials after long depolarizing pulses that shifts the R1242G residue above the omega pore constriction. A simulation reveals that the inward current might depolarize the fibre sufficiently to trigger calcium release in the absence of an action potential and therefore cause an electrically silent depolarization-induced muscle contracture. Additionally, evidence of the inward current can be found in 23Na magnetic resonance imaging-detected sodium accumulation and 1H magnetic resonance imaging-detected oedema. We hypothesize that the episodes are normokalaemic because of depolarization-induced compensatory outward potassium flux through both delayed rectifiers and omega pore. We conclude that the position of the R1242G residue before elicitation of the omega current is decisive for its conductance: if the residue is located below the gating pore as in the resting state then outward currents are observed; if the residue is above the gating pore because of depolarization, as in the inactivated state, then inward currents are observed. This study shows for the first time that functional characterization of omega pore currents is possible using a cultured cell line expressing mutant Ca(v)1.1 channels. Likewise, it is the first calcium channel mutation for complicated normokalaemic periodic paralysis.
Assuntos
Canais de Cálcio Tipo L/genética , Mutação/genética , Paralisias Periódicas Familiares/genética , Paralisias Periódicas Familiares/fisiopatologia , Potenciais de Ação/genética , Cálcio/metabolismo , Células Cultivadas , Estimulação Elétrica , Saúde da Família , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiopatologia , Paralisias Periódicas Familiares/diagnóstico por imagem , Técnicas de Patch-Clamp , Cintilografia , Isótopos de Sódio , TrítioRESUMO
We studied the consequences of the Nav1.4 mutation R1448H that is situated in the fourth voltage sensor of the channel and causes paramyotonia, a cold-induced myotonia followed by weakness. Previous work showed that the mutation uncouples inactivation from activation. We measured whole-cell Na(+) currents at 10, 15, 20, and 25°C using HEK293 cells stably transfected with wildtype (WT) and R1448H Na(+) channels. A Markov model was developed the parameters of which reproduced the data measured on WT and R1448H channels in the whole voltage and temperature range. It required an additional transient inactivated state and an additional closed-state inactivation transition not previously described. The model was used to predict single-channel properties, free energy barriers and temperature dependence of rates. It allowed us to draw the following conclusions: i) open-state inactivation results from a two-step process; ii) the channel re-openings that cause paramyotonia originate from enhanced deactivation/reactivation and not from destabilized inactivation; iii) the closed-state inactivation of R1448H is strikingly enhanced. We assume that latter explains the episodic weakness following cold-induced myotonia.
Assuntos
Temperatura Baixa , Ativação do Canal Iônico/fisiologia , Miotonia/genética , Humanos , Rim/citologia , Mutação , Miotonia/fisiopatologia , Técnicas de Patch-Clamp , Canais de Sódio/genética , TransfecçãoRESUMO
Inward rectifier potassium channels of the Kir2 subfamily are important determinants of the electrical activity of brain and muscle cells. Genetic mutations in Kir2.1 associate with Andersen-Tawil syndrome (ATS), a familial disorder leading to stress-triggered periodic paralysis and ventricular arrhythmia. To identify the molecular mechanisms of this stress trigger, we analyze Kir channel function and localization electrophysiologically and by time-resolved confocal microscopy. Furthermore, we employ a mathematical model of muscular membrane potential. We identify a novel corticoid signaling pathway that, when activated by glucocorticoids, leads to enrichment of Kir2 channels in the plasma membranes of mammalian cell lines and isolated cardiac and skeletal muscle cells. We further demonstrate that activation of this pathway can either partly restore (40% of cases) or further impair (20% of cases) the function of mutant ATS channels, depending on the particular Kir2.1 mutation. This means that glucocorticoid treatment might either alleviate or deteriorate symptoms of ATS depending on the patient's individual Kir2.1 genotype. Thus, our findings provide a possible explanation for the contradictory effects of glucocorticoid treatment on symptoms in patients with ATS and may open new pathways for the design of personalized medicines in ATS therapy.
Assuntos
Síndrome de Andersen/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Síndrome de Andersen/tratamento farmacológico , Síndrome de Andersen/genética , Animais , Feminino , Glucocorticoides/uso terapêutico , Cobaias , Células HEK293 , Células HeLa , Humanos , Proteínas Imediatamente Precoces/metabolismo , Técnicas In Vitro , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Miócitos Cardíacos/metabolismo , Oócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Estresse Fisiológico , Xenopus laevisRESUMO
Mutations in PRRT2 have been described in paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with choreoathetosis (PKD with infantile seizures), and recently also in some families with benign familial infantile seizures (BFIS) alone. We analyzed PRRT2 in 49 families and three sporadic cases with BFIS only of Italian, German, Turkish, and Japanese origin and identified the previously described mutation c.649dupC in an unstable series of nine cytosines to occur in 39 of our families and one sporadic case (77% of index cases). Furthermore, three novel mutations were found in three other families, whereas 17% of our index cases did not show PRRT2 mutations, including a large family with late-onset BFIS and febrile seizures. Our study further establishes PRRT2 as the major gene for BFIS alone.
Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Espasmos Infantis/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Convulsões Febris/genéticaRESUMO
Myotonia congenita is a genetic condition that is caused by mutations in the muscle chloride channel gene CLCN1 and characterized by delayed muscle relaxation and muscle stiffness. We here investigate the functional consequences of two novel disease-causing missense mutations, C277R and C277Y, using heterologous expression in HEK293T cells and patch clamp recording. Both mutations reduce macroscopic anion currents in transfected cells. Since hClC-1 is a double-barrelled anion channel, this reduction in current amplitude might be caused by altered gating of individual protopores or of joint openings and closing of both protopores. We used non-stationary noise analysis and single channel recordings to separate the mutants' effects on individual and common gating processes. We found that C277Y inverts the voltage dependence and reduces the open probabilities of protopore and common gates resulting in decreases of absolute open probabilities of homodimeric channels to values below 3%. In heterodimeric channels, C277R and C277Y also reduce open probabilities and shift the common gate activation curve towards positive potentials. Moreover, C277Y modifies pore properties of hClC-1. It reduces single protopore current amplitudes to about two-thirds of wild-type values, and inverts the anion permeability sequence to I(-) = NO(3)(-) >Br(-)>Cl(-). Our findings predict a dramatic reduction of the muscle fibre resting chloride conductance and thus fully explain the disease-causing effects of mutations C277R and C277Y. Moreover, they provide additional insights into the function of C277, a residue recently implicated in common gating of ClC channels.
Assuntos
Canais de Cloreto/fisiologia , Mutação , Miotonia Congênita/genética , Adulto , Cloretos/fisiologia , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Masculino , Pessoa de Meia-Idade , Miotonia Congênita/fisiopatologia , Adulto JovemRESUMO
PURPOSE: To assess whether myoplasmic ionic sodium (Na+) is increased in muscles of patients with hyperkalemic periodic paralysis (HyperPP) with 3-T sodium 23 (23Na) magnetic resonance (MR) imaging and to evaluate the effect of medical treatment on sodium-induced muscle edema. MATERIALS AND METHODS: This study received institutional review board approval; written informed consent was obtained. Proton (hydrogen 1 [1H]) and 23Na MR of both calves were performed in 12 patients with HyperPP (mean age, 48 years±14 [standard deviation]) and 12 healthy volunteers (mean age, 38 years±12) before and after provocation (unilateral cooling, one calf). 23Na MR included spin-density, T1-weighted, and inversion-recovery (IR) sequences. Total sodium concentration and normalized signal intensities (SIs) were evaluated within regions of interest (ROIs). Muscle strength was measured with the British Medical Research Council (MRC) grading scale. Five patients underwent follow-up MR after diuretic treatment. RESULTS: During rest, mean myoplasmic Na+ concentration was significantly higher in HyperPP with permanent weakness (40.7 µmol/g±3.9) compared with HyperPP with transient weakness (31.3 µmol/g±4.8) (P=.004). Mean SI in 23Na IR MR was significantly higher in HyperPP with permanent weakness (0.83±0.04; median MRC, grade 4; range, 3-5) compared with HyperPP without permanent weakness (0.67±0.05; median MRC, grade 5; range, 4-5) (P=.002). Provocation reduced muscle strength in HyperPP (before provocation, median MRC, 5; range, 3-5; after provocation, median MRC, 3; range, 1-4) and increased SI in 23Na IR from 0.75±0.09 to 0.86±0.10 (P=.004). Spin-density and T1-weighted sequences were less sensitive, particularly to cold-induced Na+ changes. 23Na IR SI remained unchanged in volunteers (0.53±0.06 before and 0.54±0.06 after provocation, P=.3). Therapy reduced mean SI in 23Na IR sequence from 0.85±0.04 to 0.64±0.11. CONCLUSION: 23Na MR imaging depicts increased myoplasmic Na+ in HyperPP with permanent weakness. Na+ overload may cause muscle degeneration developing with age. 23Na MR imaging may have potential to aid monitoring of medical treatment that reduces this overload.
Assuntos
Imageamento por Ressonância Magnética/métodos , Paralisia Periódica Hiperpotassêmica/metabolismo , Paralisia Periódica Hiperpotassêmica/patologia , Isótopos de Sódio/farmacocinética , Adulto , Edema/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular , Imagens de FantasmasRESUMO
BACKGROUND: Leukoencephalopathy with brain stem and spinal cord involvement and brain lactate elevation (LBSL) was recently shown to be caused by mutations in the DARS2 gene, encoding a mitochondrial aspartyl-tRNA synthetase. So far, affected individuals were invariably compound heterozygous for two mutations in DARS2, and drug treatments have remained elusive. METHODS: Prospective 2-year follow-up of the natural history of the main presenting symptoms in a homozygous DARS2 mutation carrier, followed by a 60 day treatment with acetazolamide in two different doses and with two random treatment interruptions. RESULTS: The patient presented with exercise-induced paroxysmal gait ataxia and areflexia as an atypical phenotype associated with a novel homozygous DARS2 mutation. These features showed an excellent dose-dependent, sustained treatment response to a carbonic anhydrase inhibitor. Pathogenic mutations in episodic ataxia genes were excluded, thus making it highly unlikely that this phenotype was because of episodic ataxia as a second disorder besides LBSL. CONCLUSIONS: This case demonstrates that DARS2 mutation homozygosity is not lethal, as suggested earlier, but compatible with a rather benign disease course. More importantly, it extends the phenotypic spectrum of LBSL and reveals that at least some DARS2-associated phenotypic features might be readily treatable. However, future observations of paroxsymal ataxia and, possibly, areflexia in other DARS2-mutated patients are warranted to further corroborate our finding that DARS2 mutations can lead to a paroxsymal ataxia phenotype.
Assuntos
Acetazolamida/administração & dosagem , Aspartato-tRNA Ligase/genética , Inibidores da Anidrase Carbônica/administração & dosagem , Marcha Atáxica/tratamento farmacológico , Marcha Atáxica/enzimologia , Adulto , Aspartato-tRNA Ligase/metabolismo , Química Encefálica , Relação Dose-Resposta a Droga , Exercício Físico , Feminino , Marcha Atáxica/metabolismo , Homozigoto , Humanos , Ácido Láctico/análise , Ácido Láctico/sangue , Imageamento por Ressonância Magnética , Mutação , Estudos Prospectivos , Medula Espinal/químicaRESUMO
The periodic paralyses are hereditary muscle diseases which cause both episodic and permanent weakness. Permanent weakness may include both reversible and fixed components, the latter caused by fibrosis and fatty replacement. To determine the degree of handicap and impact of permanent weakness on daily life, we conducted a 68-question online survey of 66 patients over 41 years (mean age, 60 ± 14 years). Permanent weakness occurred in 68%, muscle pain in 82% and muscle fatigue in 89%. Eighty-three percent of patients reported themselves as moderately to very active between ages 18-35. At the time of the survey only 14% reported themselves as moderately to very active. Contrary to the literature, only 21% of patients reported decreased frequency of episodic weakness with increased age. Sixty-seven percent had incurred injuries due to falls. Mobility aids were required by 49%. Strength increased in 49% of patients receiving professional physiotherapy and in 62% performing self-managed exercise routines. A decline of strength was observed by 40% with professional and by 16% with self-managed exercise routine, suggesting that overworking muscles may not be beneficial. There is an average of 26 years between age at onset and age at diagnosis indicating that diagnostic schemes can be improved. In summary our data suggests that permanent muscle weakness has a greater impact on the quality of life of patients than previously anticipated.
Assuntos
Paralisia Periódica Hiperpotassêmica , Qualidade de Vida , Acidentes por Quedas/estatística & dados numéricos , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Terapia por Exercício , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular , Paralisia Periódica Hiperpotassêmica/tratamento farmacológico , Paralisia Periódica Hiperpotassêmica/genéticaRESUMO
Muscular dystrophies such as Duchenne muscular dystrophy (DMD) are usually approached as dysfunctions of the affected skeletal myofibres and their force transmission. Comparatively little attention has been given to the increase in connective tissue (fibrosis) which accompanies these muscular changes. Interestingly, an increase in endomysial tissue is apparent long before any muscular degeneration can be observed. Fibrosis is the result of a reactive or reparative process involving mechanical, humoral and cellular factors. Originating from vulnerable myofibres, muscle cell necrosis and inflammatory processes are present in DMD. Muscular recovery is limited due to the limited number and capacity of satellite cells. Hence, a proactive and multimodal approach is necessary in order to activate protective mechanisms and to hinder catabolic and tissue degrading pathways. Several avenues are discussed in terms of potential antifibrotic therapy approaches. These include pharmaceutical, nutritional, exercise-based and other mechanostimulatory modalities (such as massage or yoga-like stretching) with the intention of exerting an anti-inflammatory and antifibrotic effect on the affected muscular tissues. A preventive intervention at an early age is crucial, based on the early and seemingly non-reversible nature of the fibrotic tissue changes. Since consistent assessment is essential, different measurement technologies are discussed.