RESUMO
Schistosomiasis caused by human schistosomes such as Schistosoma japonicum (S. japonicum) is considered as an immune-related disease. It was demonstrated that specific cytokine antibodies' response elicited by S. japonicum infection was gradually downregulated with the progress of the disease, resulting in a Th1/Th2 polarization and suppression of immune response. CD28 (cluster of differentiation 28) is one of the proteins expressed on T cells that provide co-stimulatory signals required for T cell activation and survival, and CD38 is an activating marker of T lymphocyte with high expression in many acute or chronic infections. The immune signature of CD28null T cells in the peripheral circulation associates with chronic inflammation in many diseases, such as HIV and CMV infection. In the thymus, CD28 expression on developing thymocytes appears to play a role for their selection, and it synergizes with CD38 to induce apoptosis of DP (double-positive) thymocytes. Few reports about CD28 and CD38 have been published in schistosomiasis. Here, we investigated the dynamic patterns of the expression of molecules CD28 and CD38 on CD4(+)/CD8(+) T lymphocytes of the thymus and spleen in mice model with S. japonicum infection. Our data indicated that at an early period of infection, the frequency of CD8(+)CD28(-) T cell in the spleen decreased significantly, but higher at chronic infection than that in control. However, it demonstrated an increasing trend in the thymus with the progression of infection. The frequency of CD4(+)CD28(-) T cells increased from acute infection in the thymus, while from chronic infection in the spleen. The expression of CD38 on CD8(+) T cells began to increase at 4 weeks post infection both in the thymus and spleen; its elevated expression on CD4(+) T cells emerged at 6 weeks post infection in the thymus and at 10 weeks post infection in the spleen. Praziquantel (PZQ) treatment could partially restore the frequency of CD28(+) T cell of CD4(+) T cells and CD38(+) T cell of CD8(+)/CD4(+) T cells in the spleen and CD38(+) T cell in the thymus. We hypothesized that the reactivation of S. japonicum infection may trigger expansion of CD28(-) T cells and hence mediate systemic inflammation. We speculated that CD8(+)CD28(-) T cell might be involved in immune modulation and CD8(+)CD28(-) T cell may be a crucial part in pathogenesis, which can provide further knowledge of the sophisticated mechanism of immuno-downregulation in schistosomiasis and potential treatment target.
Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Regulação da Expressão Gênica/imunologia , Esquistossomose Japônica/metabolismo , ADP-Ribosil Ciclase 1/genética , Animais , Antígenos CD28/genética , Humanos , Ativação Linfocitária/imunologia , Camundongos , Schistosoma japonicum/imunologia , Esquistossomose Japônica/parasitologia , Baço/imunologia , Timo/metabolismoRESUMO
BACKGROUND AND AIMS: A marked egg-induced CD4+ T cell programmed inflammation and subsequent hepatic fibrosis characterize the pathogenesis of schistosomiasis. Mesenchymal stem cell (MSC) has been extensively studied for the treatment of schistosomiasis. However, the mechanism by which MSCs modulate the pathogenesis of schistosomiasis has not been clarified. Furthermore, the local inflammatory milieu may greatly influence the immunoregulatory properties of MSCs, and our early experiments demonstrated that Toll-like receptor (TLR)2/TLR4 agonist effected immune modulation of MSC. Here, we further investigated their modulation on the pathogenesis of schistosomiasis. METHODS: Adult BALB/c male mice were percutaneously infected with 16 ± 2 pairs S. japonicum cercariae and received intravenously pretreated MSC at 1 week and 3 weeks post-infection, respectively. At 8 weeks post-infection, effects of MSC on liver histology were shown by hematoxylin and eosin (H&E) staining and Masson staining and quantitatively compared by the hepatic hydroxyproline content; α-smooth muscle actin (α-SMA), collagen type I(Col-1), transforming growth factor ß (TGF-ß), and tumor necrosis factor-α (TNF-α) gene expression in the liver were assessed by semi-quantitative polymerase chain reaction (PCR); the Th1/Th2 dominance among different groups was compared by analyzing CD4+ interferon-γ (IFN-γ)+ and CD4+interleukin-4 (IL-4)+T cells in the liver by flow cytometry and serum level of IFN-γ and IL-5 using enzyme-linked immunosorbent assay (ELISA). Effects of different kinds of MSC were further evaluated in vitro by the coculture system. RESULTS: Results showed TLR4- and IFN-γ-activated MSC alleviated liver fibrosis in infected mice, without a significant increase of mortality, and unpretreated MSC showed no clear improvement; however, TLR2- and IFN-γ-activated MSC displayed aggravated immunopathology. In accord with the pathological results, TLR4- and IFN-γ-activated MSC groups showed moderate enhancement of Th1 response in vitro and clear Th1 dominance in vivo without leading to extreme inflammation, whereas TLR2- and IFN-γ-activated MSC not only induced Th1 response, but also triggered excessive inflammation as evidenced by atrophy of the thymus and higher TNF level in the coculture system. CONCLUSIONS: This study demonstrates that TLR4 combined with IFN-γ can activate the MSC group with positive effects on the pathology of schistosomiasis by modulating Th subsets at some degree. This result suggests that when MSC is being used to treat different immuno-disturbance complications, subtle pretreatment methods should be seriously considered.
Assuntos
Células-Tronco Mesenquimais , Esquistossomose Japônica , Esquistossomose , Animais , Interferon gama/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor 2 Toll-Like/genética , Receptor 4 Toll-LikeRESUMO
AIM: Recent reports have shown the capacity of mesenchymal stem cells (MSCs) to differentiate into hepatocytes in vitro and in vivo. MSCs administration could repair injured liver, lung, or heart through reducing inflammation, collagen deposition, and remodeling. These results provide a clue to treatment of liver fibrosis. The aim of this study was to investigate the effect of infusion of bone marrow (BM)-derived MSCs on the experimental liver fibrosis in rats. METHODS: MSCs isolated from BM in male Fischer 344 rats were infused to female Wistar rats induced with carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN). There were two random groups on the 42nd d of CCl4:CCl4/MSCs, to infuse a dose of MSCs alone; CCl4/saline, to infuse the same volume of saline as control. There were another three random groups after exposure to DMN: DMN10/MSCs, to infuse the same dose of MSCs on d 10; DMN10/saline, to infuse the same volume of saline on d 10; DMN20/MSCs, to infuse the same dose of MSCs on d 20. The morphological and behavioral changes of rats were monitored everyday. After 4-6 wk of MSCs administration, all rats were killed and fibrosis index were assessed by histopathology and radioimmunoassay. Smooth muscle alpha-actin (alpha-SMA) of liver were tested by immunohistochemistry and quantified by IBAS 2.5 software. Male rats sex determination region on the Y chromosome (sry) gene were explored by PCR. RESULTS: Compared to controls, infusion of MSCs reduced the mortality rates of incidence in CCl4-induced model (10% vs 20%) and in DMN-induced model (20-40% vs 90%). The amount of collagen deposition and alpha-SMA staining was about 40-50% lower in liver of rats with MSCs than that of rats without MSCs. The similar results were observed in fibrosis index. And the effect of the inhibition of fibrogenesis was greater in DMN10/MSCs than in DMN20/MSCs. The sry gene was positive in the liver of rats with MSCs treatment by PCR. CONCLUSION: MSCs treatment can protect against experimental liver fibrosis in CCl4-induced or DMN-induced rats and the mechanisms of the anti-fibrosis by MSCs will be studied further.
Assuntos
Células da Medula Óssea/citologia , Transplante de Células-Tronco Hematopoéticas , Hepatócitos/citologia , Cirrose Hepática/terapia , Animais , Tetracloreto de Carbono , Diferenciação Celular , Dimetilnitrosamina , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Masculino , Mesoderma/citologia , Ratos , Ratos Endogâmicos F344RESUMO
To investigate effects of rat bone marrow mesenchymal stem cells (rBMMSC) on hematopoiesis after allo-hematopoietic stem cell transplantation (HSCT), allogeneic BMT model from Fischer 344 rats (RT-1Al) to Wistar rats (RT-1Au) was established; effects of MSCs on hematopoietic reconstitution were studied by survival rate, peripheral blood counts, histological analysis and FACS at day 30 after transplantation. The results showed that (1) MSCs from donor Fisher344 could survive in recipient irradiated by lethal dose and could be found in the thymus, spleen and bone marrow of the recipient at 30 days after cotransplantation with BM by measuring EGFP gene. (2) Cotransplanation of MSCs and BM improved hematopoietic reconstitution. Lymphocyte and platelet counts of peripheral blood in cotransplantation group were higher than those in the control group. Active hematopoiesis and increase of bone marrow nucleated cells were observed in cotransplantation group. MSCs significantly enhanced hematopoiesis of B lymphocyte and megakaryocytopoietic lineages by FACS analysis. It is concluded that (1) MSCs of Fisher344 can be found in the thymus, spleen, bone marrow of the recipients at 30 days after cotransplantion by measuring EGFP gene. (2) hematopoietic reconstitution is significantly enhanced by MSCs cotransplanted with BM.