Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(42): e2408273121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39388268

RESUMO

The concurrent preservation of morphological, structural, and genomic attributes within biological samples is paramount for comprehensive insights into biological phenomena and disease mechanisms. However, current preservation methodologies (e.g., cryopreservation, chemical reagent fixation, and bioplasticization) exhibit limitations in simultaneously achieving these critical combined goals. To address this gap, inspired by natural fossilization, here we propose "deep silicification," a room temperature technology that eliminates fixation requirements and overcomes the cold chain problem. By harnessing the synergy between ethanol and dimethyl sulfoxide, deep silicification significantly enhances silica penetration and accumulation within bioorganisms, thereby reinforcing structural integrity. This versatile and cost-effective approach demonstrates remarkable efficacy in preserving organismal morphology across various scales. Accelerated aging experiments underscore a 4,723-fold enhancement in genomic information storage over millennia, with whole-genome sequencing confirming nearly 100% fidelity. With its simplicity and reliability, "deep silicification" represents a paradigm shift in biological sample storage.


Assuntos
Genômica , Genômica/métodos , Animais , Dióxido de Silício/química , Dimetil Sulfóxido/química , Humanos , Preservação Biológica/métodos , Etanol/química
2.
Proc Natl Acad Sci U S A ; 121(35): e2322418121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159377

RESUMO

The growing world population and increasing life expectancy are driving the need to improve the quality of blood transfusion, organ transplantation, and preservation. Here, to improve the ability of red blood cells (RBCs) for normothermic machine perfusion, a biocompatible blood silicification approach termed "shielding-augmenting RBC-in-nanoscale amorphous silica (SARNAS)" has been developed. The key to RBC surface engineering and structure augmentation is the precise control of the hydrolysis form of silicic acid to realize stabilization of RBC within conformal nanoscale silica-based exoskeletons. The formed silicified RBCs (Si-RBCs) maintain membrane/structural integrity, normal cellular functions (e.g., metabolism, oxygen-carrying capability), and enhance resistance to external stressors as well as tunable mechanical properties, resulting in nearly 100% RBC cryoprotection. In vivo experiments confirm their excellent biocompatibility. By shielding RBC surface antigens, the Si-RBCs provide universal blood compatibility, the ability for allogeneic mechanical perfusion, and more importantly, the possibility for cross-species transfusion. Being simple, reliable, and easily scalable, the SARNAS strategy holds great promise to revolutionize the use of engineered blood for future clinical applications.


Assuntos
Materiais Biocompatíveis , Eritrócitos , Dióxido de Silício , Eritrócitos/metabolismo , Dióxido de Silício/química , Materiais Biocompatíveis/química , Animais , Humanos , Perfusão/métodos , Preservação de Sangue/métodos , Transfusão de Sangue/métodos , Camundongos
3.
J Cell Mol Med ; 28(11): e18366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856956

RESUMO

Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.


Assuntos
AMP Cíclico , Receptores Odorantes , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Masculino , Ratos , Apoptose , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética
4.
Med Princ Pract ; 33(3): 269-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38565090

RESUMO

INTRODUCTION: Parkinson's disease (PD) is the most common neurodegenerative disease worldwide. Studies have shown that insulin-like growth factor-binding protein 5 (IGFBP5) may contribute to methamphetamine-induced neurotoxicity and neuronal apoptosis in PC-12 cells and rat striatum. Here, we studied the expression and role of IGFBP5 in the 6-OHDA-toxicant model of PD. METHODS: PC-12 and SH-SY5Y cells were exposed to 50 µm 6-OHDA for 24 h. qRT-PCR, western blotting, CCK-8 assay, EdU staining, annexin V staining, and immunofluorescence were performed to study the effects of IGFBP5-specific siRNAs. The effects of IGFBP5 on a rat 6-OHDA model of PD were confirmed by performing behavioral tests, tyrosine hydroxylase (TH) immunofluorescence staining, and western blotting. RESULTS: In the GSE7621 dataset, IGFBP5 was highly expressed in the substantia nigra tissues of PD patients compared to healthy controls. In PC-12 and SH-SY5Y cells, IGFBP5 was upregulated following 6-OHDA exposure in a dose-dependent manner. Silencing of IGFBP5 promoted PC-12 and SH-SY5Y proliferation and inhibited apoptosis under 6-OHDA stimulation. Silencing of IGFBP5 relieved 6-OHDA-induced TH-positive neuron loss. Hedgehog signaling pathway was predicted as a downstream signaling pathway of IGFBP5. Negative regulation between IGFBP5 and sonic hedgehog (SHH) signaling pathway was confirmed in vitro. The effects of IGFBP5 silencing on SH-SY5Y cells were partially reversed using cyclopamine, a direct inhibitor of the SHH signaling pathway. In addition, silencing of IGFBP5 attenuated motor deficits and neuronal damage in 6-OHDA-induced PD rats. CONCLUSION: Elevated IGFBP5 expression may be involved in 6-OHDA-induced neurotoxicity through regulation of the SHH signaling pathway.


Assuntos
Apoptose , Proteínas Hedgehog , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina , Oxidopamina , Doença de Parkinson , Transdução de Sinais , Animais , Proteínas Hedgehog/metabolismo , Ratos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Modelos Animais de Doenças , Masculino , Células PC12 , Ratos Sprague-Dawley
5.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2947-2952, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-39041154

RESUMO

This paper aimed to study the chemical constituents from Clitocybe clavipes. Silica gel, ODS, Sephadex LH-20, and semi-p reparative HPLC were employed to separate the ethanol extract of C. clavipes. Six compounds were identified by ~1H-NMR, ~(13)CNMR,and ESI-MS as clavilactone L(1), clavilactone A(2), clavilactone B(3), clavilactone E(4), clavilactone H(5), and clav ilactone I(6). Among them, compound 1 was a new meroterpenoid with a 10-membered carbocycle connected to a hydroquinone. Theantitumor activities of compounds 1-6 were determined by the methyl thiazolyl tetrazolium(MTT) ass ay. The results showed that compounds 1-6 exerted inhibitory effects on the proliferation of human gastric cancer cells(MGC-803),human non-small cell lung cancer cells(A549), and cervical cancer cells(HeLa). Compound 1 exhibited significant inhibitory activity against MGC-803 cells, with the half maximal inhibitory concentration(IC_(50)) of 11. 76 µmol·L~(-1).


Assuntos
Proliferação de Células , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Estrutura Molecular , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
6.
Angew Chem Int Ed Engl ; 63(29): e202406110, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711195

RESUMO

The ability to finely tune/balance the structure and rigidity of enzymes to realize both high enzymatic activity and long-term stability is highly desired but highly challenging. Herein, we propose the concept of the "silicazyme", where solid inorganic silica undergoes controlled hybridization with the fragile enzyme under moderate conditions at the single-enzyme level, thus enabling simultaneous structure augmentation, long-term stability, and high enzymatic activity preservation. A multivariate silicification approach was utilized and occurred around individual enzymes to allow conformal coating. To realize a high activity-stability trade-off the structure flexibility/rigidity of the silicazyme was optimized by a component adjustment ternary (CAT) plot method. Moreover, the multivariate organosilica frameworks bring great advantages, including surface microenvironment adjustability, reversible modification capability, and functional extensibility through the rich chemistry of silica. Overall silicazymes represent a new class of enzymes with promise for catalysis, separations, and nanomedicine.


Assuntos
Dióxido de Silício , Dióxido de Silício/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
7.
Neurochem Res ; 48(2): 570-578, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36333599

RESUMO

Ferroptosis and neuroinflammation play a crucial role in the pathogenesis of Alzheimer's disease (AD), and Edaravone (EDA) has been demonstrated to have anti-inflammatory, antioxidant and neuroprotective effects in neurodegenerative diseases. However, the relationship between EDA and ferroptosis in AD is unidentified. This research aimed to elucidate the mechanism of EDA in AD with Aß 1-42-induced HT22 cells as in vitro cell model. The results showed that EDA could significantly reduce Aß1-42-induced apoptosis of HT22 cells and formation of pro-inflammatory factors TNF-α, IL-1ß and IL-6, prevent the activation of TLR4/NF-κB /NLRP3 signaling pathway, and inhibit ferroptosis and lipid peroxidation. Taken together, EDA contributes to inhibiting neuroinflammatory injury and ferroptosis in Aß 1-42-induced HT22 cells, and thus may be a potential candidate for the treatment of AD.


Assuntos
Doença de Alzheimer , Ferroptose , Fármacos Neuroprotetores , Humanos , Edaravone/farmacologia , Edaravone/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais , NF-kappa B/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade
8.
Environ Sci Technol ; 57(45): 17189-17200, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37917731

RESUMO

As the world grapples with the challenges of energy transition and industrial decarbonization, the development of carbon capture technologies presents a promising solution. The Scalable Modeling, Artificial Intelligence (AI), and Rapid Theoretical calculations, referred as SMART here, is an interdisciplinary approach that combines high-throughput calculation and data-driven modeling with expertise from chemical, materials, environmental, computer and data science and engineering, leading to the development of advanced capabilities in simulating and optimizing carbon capture processes. This perspective discusses the state-of-the-art material discovery research enabled by high-throughput calculation and data-driven modeling. Further, we propose a framework for material discovery, and illustrate the synergies among deep learning models, pretrained models, and comprehensive data sets, emerging as a robust framework for data-driven design and development in carbon capture. In essence, the adoption of the SMART approach promises a revolutionary impact on efforts in energy transition and industrial decarbonization.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Tecnologia , Carbono , Indústrias
9.
Environ Toxicol ; 38(11): 2645-2655, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37647369

RESUMO

BACKGROUND: BRCA1 associated protein (BRAP) participates in the regulation of myocardial infarction and atherosclerosis. But the function of BRAP in cerebral ischemia-reperfusion (CIR) injury has not been elucidated yet. METHODS: BRAP expression in PC12 cells in response to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment was examined with Western blot assay. PC12 cells underwent OGD/R-treatment and were subsequently transfected with pcDNA-BRAP or sh-BRAP, followed by determination of viability, lactate dehydrogenase (LDH) production, apoptosis, inflammatory cytokine secretion, and oxidative stress marker protein levels. Paraoxonase 1 (PON1) promoter methylation was evaluated with methylation-specific PCR assay. the effect of BRAP/PON1 axis on CIR injury was investigated by rescue experiments. Additionally, sh-BRAP was injected into a middle cerebral artery occlusion (MCAO) rat model, and the changes of neurological damage were evaluated. RESULTS: BRAP overexpression exacerbated OGD/R-induced viability reduction, LDH production, apoptosis, inflammatory cytokine secretion and oxidative stress in PC12 neuronal cells. In contrast, BRAP silencing showed the opposite results. Mechanistically, BRAP reduced PON1 expression by promoting DNA methyl transferase1 (DNMT1)-mediated PON1 promoter methylation. PON1 silencing reversed BRAP-mediated neuroprotection. Additionally, BRAP silencing alleviated CIR-induced neurological damage in MCAO rats. CONCLUSION: BRAP silencing suppressed OGD/R-induced neuronal apoptosis, inflammation, and oxidative stress, and alleviated CIR-induced neurological damage in MCAO rats through facilitating PON1 expression.


Assuntos
Arildialquilfosfatase , Traumatismo por Reperfusão , Ubiquitina-Proteína Ligases , Animais , Ratos , Apoptose/genética , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Citocinas/metabolismo , Glucose/farmacologia , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/genética , Estresse Oxidativo , Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Ubiquitina-Proteína Ligases/genética
10.
Sensors (Basel) ; 23(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299872

RESUMO

A number of textile-based fiber optic sensors have recently been proposed for the continuous monitoring of vital signs. However, some of these sensors are likely unsuitable for conducting direct measurements on the torso as they lack elasticity and are inconvenient. This project provides a novel method for creating a force-sensing smart textile by inlaying four silicone-embedded fiber Bragg grating sensors into a knitted undergarment. The applied force was determined within 3 N after transferring the Bragg wavelength. The results show that the sensors embedded in the silicone membranes achieved enhanced sensitivity to force, as well as flexibility and softness. Additionally, by assessing the degree of FBG response to a range of standardized forces, the linearity (R2) between the shift in the Bragg wavelength and force was found to be above 0.95, with an ICC of 0.97, when tested on a soft surface. Furthermore, the real-time data acquisition could facilitate the adjustment and monitoring of force during the fitting processes, such as in bracing treatment for adolescent idiopathic scoliosis patients. Nevertheless, the optimal bracing pressure has not yet been standardized. This proposed method could help orthotists to adjust the tightness of brace straps and the location of padding in a more scientific and straightforward way. The output of this project could be further extended to determine ideal bracing pressure levels.


Assuntos
Têxteis , Elasticidade , Pressão , Silicones , Reprodutibilidade dos Testes
11.
Angew Chem Int Ed Engl ; 62(22): e202217374, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36988087

RESUMO

To increase the red blood cell (RBC) cryopreservation efficiency by metal-organic frameworks (MOFs), a dimensional reduction approach has been proposed. Namely, 3D MOF nanoparticles are progressively reduced to 2D ultra-thin metal-organic layers (MOLs). We found that 2D MOLs are beneficial for enhanced interactions of the interfacial hydrogen-bonded water network and increased utilization of inner ordered structures, due to the higher surface-to-volume ratio. Specifically, a series of hafnium (Hf)-based 2D MOLs with different thicknesses (monolayer to stacked multilayers) and densities of hydrogen bonding sites have been synthesized. Both ice recrystallization inhibition activity (IRI) and RBCs cryopreservation assay confirm the pronounced better IRI activity and excellent cell recovery efficiency (up to ≈63 % at a very low concentration of 0.7 mg mL-1 ) of thin-layered Hf-MOLs compared to their 3D counterparts, thereby verifying the dimensional reduction strategy to improved cryoprotectant behaviors.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Criopreservação/métodos , Crioprotetores/farmacologia , Crioprotetores/química , Gelo , Háfnio/química , Eritrócitos
12.
J Am Chem Soc ; 144(21): 9443-9450, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35603745

RESUMO

Efficient transfection of therapeutic agents and timely potency testing are two key factors hindering the development of cellular therapy. Here we present a cellular-nanoporation and exosome assessment device, a quantitative platform for nanochannel-based cell electroporation and exosome-based in situ RNA expression analysis. In its application to transfection of anti-miRNAs and/or chemotherapeutics into cells, we have systematically described the differences in RNA expression in secreted exosomes and assessed cellular therapies in real time.


Assuntos
Exossomos , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Transfecção
13.
Nanotechnology ; 34(10)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562511

RESUMO

Electrohydrodynamic (EHD) printing has been considered as a mature strategy to mimic the hierarchical microarchitectures in native extracellular matrix (ECM). Most of the EHD-printed scaffolds possess single-dimensional fibrous structures, which cannot mimic the multi-dimensional architectures for enhanced cellular behaviors. Here we developed a two-nozzle EHD printing system to fabricate hybrid scaffolds involving submicron and microscale features. The polyethylene oxide- polycaprolactone (PEO-PCL) submicron fibers were fabricated via solution-based EHD printing with a width of 527 ± 56 nm. The PCL microscale fibers were fabricated via melt-based EHD printing with a width of 11.2 ± 2.3µm. The hybrid scaffolds were fabricated by printing the submicron and microscale fibers in a layer-by-layer manner. The microscale scaffolds were utilized as a control group. Rat myocardial cells (H9C2 cells) were cultured on the two kinds of scaffolds for the culturing period of 1, 3 and 5 d. Biological results indicated that H9C2 cells showed enhanced adhesion and proliferation behaviors on the hybrid scaffold than those on the pure microscale scaffold. This work offers a facile and scalable strategy to fabricate multiscale synthetic scaffolds, which might be further explored to regulate cellular behaviors in the fields of tissue regeneration and biomedical engineering.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Ratos , Animais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Linhagem Celular , Poliésteres/química , Proliferação de Células , Impressão Tridimensional
14.
Macromol Rapid Commun ; 43(5): e2100769, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34932252

RESUMO

A simple preparation of inorganic reinforced poly(ionic liquid) (PIL) microcapsules by combining dispersion polymerization and confined cooling-assisted phase separation self-assembly is reported. Silane coupling agent-modified PIL microbeads are first prepared by dispersion polymerization. Then, the microbeads are dissolved in a theta solvent composed of good solvent and non-solvent to form hollow SiOx microcapsules at a relatively high temperature. Finally, the solution is cooled to induce the nucleation and growth of dissolved PIL chains on the inner and outer surface of hollow SiOx microcapsules to form inorganic reinforced microcapsules with asymmetric PIL/SiOx /PIL sandwich-like shell. The morphology of microcapsules can be controlled by adjusting PIL concentration and cooling rate. The inorganic reinforced microcapsules show enhanced suspended stability and electroresponsive characteristic when used as the dispersed phase of smart suspensions.


Assuntos
Líquidos Iônicos , Cápsulas , Transição de Fase , Polimerização , Solventes
15.
Biol Res ; 55(1): 16, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379352

RESUMO

BACKGROUND: Betahistine is a clinical medication for the treatment of benign paroxysmal positional vertigo (BPPV). Otolin, a secreted glycoprotein with a C-terminal globular domain homologous to the immune complement C1q, has been identified as a biomarker for BPPV. However, the role of complement C1q/TNF-related proteins (CTRPs) with a C-terminal globular domain in BPPV is unclear, so we explored the change of CTRPs in betahistine treated BPPV. METHODS: We treated BPPV patients with Betahistine (12 mg/time, 3 times/day) for 4 weeks and observed the clinical efficacy and the expression of CTRP family members in BPPV patients. Then, we constructed a vertigo mice model of vestibular dysfunction with gentamicin (150 mg/Kg) and a BPPV model of Slc26a4loop/loop mutant mice. Adenoviral vectors for CTRP expression vector and small interfering RNA were injected via the intratympanic injection into mice and detected the expression of CTRP family members, phosphorylation levels of ERK and AKT and the expression of PPARγ. In addition, we treated mice of vestibular dysfunction with Betahistine (10 mg/Kg) and/or ERK inhibitor of SCH772984 (12 mg/Kg) and/or and PPARγ antagonist GW9662 (1 mg/Kg) for 15 days, and evaluated the accuracy of air righting reflex, the time of contact righting reflex and the scores of head tilt and swimming behavior. RESULTS: After treatment with Betahistine, the residual dizziness duration and the score of the evaluation were reduced, and the expression of CTRP1, 3, 6, 9 and 12 were significantly increased in BPPV patients. We also found that Betahistine improved the accuracy of air righting reflex, reduced the time of contact righting reflex and the scores of head tilt and swimming behavior in gentamicin-treated mice and Slc26a4loop/loop mutant mice. The expression levels of CTRP1, 3, 6, 9 and 12, phosphorylation levels of ERK and AKT, and PPARγ expression were significantly increased, and the scores of head tilt and swimming behavior were decreased in vestibular dysfunction mice with overexpression of CTRPs. Silencing CTRPs has the opposite effect. SCH772984 reversed the effect of Betahistine in mice with vestibular dysfunction. CONCLUSION: Betahistine alleviates BPPV through inducing production of multiple CTRP family members and activating the ERK1/2-AKT/PPARy pathway.


Assuntos
Vertigem Posicional Paroxística Benigna , beta-Histina , Animais , Vertigem Posicional Paroxística Benigna/tratamento farmacológico , beta-Histina/farmacologia , beta-Histina/uso terapêutico , Tontura/tratamento farmacológico , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , PPAR gama , Proteínas Proto-Oncogênicas c-akt
16.
Pestic Biochem Physiol ; 182: 105040, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249648

RESUMO

Long-term reliance on herbicide weed control has led to resistance evolution in Eleusine indica in sugarcane fields of Guangxi Zhuang autonomous region. Ninety-six E. indica lines were collected from this region, and their response was tested to six herbicides: glyphosate; glufosinate; PSII-inhibitors diuron and atrazine; and PSI inhibitors paraquat and diquat. Target-site resistance mechanisms were examined in specific lines with multiple resistance to three herbicide modes of action. Of 96 E. indica lines, 51, 26, and 24 lines had resistance to diuron, atrazine, and diquat, respectively, while 14 and 9 had resistance to paraquat and glyphosate. Among 25 lines tested with multiple resistance, 7 lines exhibited resistance to three herbicide modes of action. In two multiple resistant lines (GXER2, GXER5), amplification/over-expression/mutations of the EPSPS gene contributed to the very high-level (up to 109-fold) glyphosate resistance. No target-site mutations/over-expression were identified in the psbA gene in these two lines, so non-target-site resistance mechanisms were likely responsible for the low-level (3-fold) resistance to the PSII herbicides diuron and atrazine. A high-level (23-fold) of paraquat resistance was observed in GXER5, and a low-level (5-fold) paraquat resistance was found in GXER2. Multiple herbicide resistance in E. indica has evolved in sugarcane fields of Guangxi Zhuang autonomous region with diverse resistance mechanisms. Therefore, diversified weed control tactics should be adopted to prevent this weed.


Assuntos
Eleusine , Herbicidas , Saccharum , China , Eleusine/genética , Regulação da Expressão Gênica de Plantas , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Saccharum/genética
17.
J Am Chem Soc ; 143(17): 6305-6322, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33826324

RESUMO

In nature, biosilicification directs the formation of elaborate amorphous silica exoskeletons that provide diatoms mechanically strong, chemically inert, non-decomposable silica armor conferring chemical and thermal stability as well as resistance to microbial attack, without changing the optical transparency or adversely effecting nutrient and waste exchange required for growth. These extraordinary silica/cell biocomposites have inspired decades of biomimetic research aimed at replication of diatoms' hierarchically organized exoskeletons, immobilization of cells or living organisms within silica matrices and coatings to protect them against harmful external stresses, genetic re-programming of cellular functions by virtue of physico-chemical confinement within silica, cellular integration into devices, and endowment of cells with non-native, abiotic properties through facile silica functionalization. In this Perspective, we focus our discussions on the development and concomitant challenges of bioinspired cell silicification ranging from "cells encapsulated within 3D silica matrices" and "cells encapsulated within 2D silica shells" to extra- and intracellular silica replication, wherein all biomolecular interfaces are encased within nanoscopic layers of amorphous silica. We highlight notable examples of advances in the science and technology of biosilicification and consider challenges to advancing the field, where we propose cellular "mineralization" with arbitrary nanoparticle exoskeletons as a generalizable means to impart limitless abiotic properties and functions to cells, and, based on the interchangeability of water and silicic acid and analogies between amorphous ice and amorphous silica, we consider "freezing" cells within amorphous silica as an alternative to cryo-preservation.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Animais , Diatomáceas/química , Diatomáceas/metabolismo , Humanos
18.
BMC Med ; 19(1): 140, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112147

RESUMO

Tumor-infiltrating lymphocyte (TIL) therapy is a type of adoptive cellular therapy by harvesting infiltrated lymphocytes from tumors, culturing and amplifying them in vitro and then infusing back to treat patients. Its diverse TCR clonality, superior tumor-homing ability, and low off-target toxicity endow TIL therapy unique advantages in treating solid tumors compared with other adoptive cellular therapies. Nevertheless, the successful application of TIL therapy currently is still limited to several types of tumors. Herein in this review, we summarize the fundamental work in the field of TIL therapy and the current landscape and advances of TIL clinical trials worldwide. Moreover, the limitations of the current TIL regimen have been discussed and the opportunities and challenges in the development of next-generation TIL are highlighted. Finally, the future directions of TIL therapy towards a broader clinical application have been proposed.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias , Humanos , Imunoterapia Adotiva , Linfócitos , Neoplasias/terapia
19.
Macromol Rapid Commun ; 42(17): e2100275, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34288210

RESUMO

A simple and large-scale non-chemical preparation of uniform poly(ionic liquid) (PIL) microbeads via a cooling-assisted phase separation (CAPS) method is reported. For this method, PIL bulk is dissolved to form a saturated solution in a mixed solvent composed of good solvent and non-solvent at a relatively high temperature. Then, the uniform PIL microbeads are prepared by cooling the solution to room temperature or a lower temperature in the absence of stabilizer. The size of microbeads can be controlled by adjusting the preparation parameters, including PIL concentration, cooling rate, and agitation state. The scale of preparation can be up to 10 g, and the yield of PIL microbeads is more than 70% or 88% when the solution is cooled to room temperature or 0 °C, respectively. The formation mechanism of PIL microbeads is discussed by tracing the nucleation and growth process by the transmittance of light of the solution during cooling. The application of this CAPS method to other polymer microbeads preparation is finally discussed by choosing different good solvent and non-solvent.


Assuntos
Líquidos Iônicos , Microesferas , Transição de Fase , Solventes , Temperatura
20.
Biochem Biophys Res Commun ; 529(2): 140-147, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703402

RESUMO

Cerebral stroke is a leading global cause for mortality and disability. However, its pathogenesis is still unclear. Most tripartite motif (TRIM) family proteins, including TRIM62, have E3 ubiquitin ligase activities, and have multiple functions in regulating cellular processes. Nevertheless, the effects of TRIM62 on cerebral stroke still remain vague. Here, we reported that TRIM62 expression was markedly up-regulated in oxygen and glucose deprivation (OGD)-treated microglial cells. After cerebral ischemia, significantly elevated expression of TRIM62 was detected in peri-infarct area of wild type (WT) mice. The TRIM62 knockout (KO) mice exhibited alleviated apoptosis and neuroinflammation in the ischemic brain, eventually attenuating the stroke outcomes. Both in vitro and in vivo studies showed that nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome was dramatically activated in cerebral ischemia/reperfusion (I/R) conditions, while being ameliorated in TRIM62-KO mice, contributing to the suppression of neuroinflammatory response. Importantly, the in vitro experiments showed that OGD could induce the K63-ubiquitination of TRIM62 and the interaction between TRIM62 and NLRP3. In addition, adenovirus-regulated TRIM62 over-expression promoted the NLRP3 and nuclear factor κB (NF-κB) signaling, along with elevated interleukin-1ß (IL-1ß) and IL-18 transcriptional activities. Together, our results demonstrated that TRIM62 suppression was strongly protective in ischemic stroke through inhibiting NLRP3-regulated neuroinflammation.


Assuntos
Isquemia Encefálica/genética , Inflamação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Angiotensina/genética , Receptores de Endotelina/genética , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Técnicas de Inativação de Genes , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Angiotensina/metabolismo , Receptores de Endotelina/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA