Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 30, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233793

RESUMO

MOTIVATION: Within the frame of their genetic capacity, organisms are able to modify their molecular state to cope with changing environmental conditions or induced genetic disposition. As high throughput methods are becoming increasingly affordable, time series analysis techniques are applied frequently to study the complex dynamic interplay between genes, proteins, and metabolites at the physiological and molecular level. Common analysis approaches fail to simultaneously include (i) information about the replicate variance and (ii) the limited number of responses/shapes that a biological system is typically able to take. RESULTS: We present a novel approach to model and classify short time series signals, conceptually based on a classical time series analysis, where the dependency of the consecutive time points is exploited. Constrained spline regression with automated model selection separates between noise and signal under the assumption that highly frequent changes are less likely to occur, simultaneously preserving information about the detected variance. This enables a more precise representation of the measured information and improves temporal classification in order to identify biologically interpretable correlations among the data. AVAILABILITY AND IMPLEMENTATION: An open source F# implementation of the presented method and documentation of its usage is freely available in the TempClass repository, https://github.com/CSBiology/TempClass  [58].


Assuntos
Projetos de Pesquisa , Fatores de Tempo
2.
Front Physiol ; 9: 695, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937735

RESUMO

Motivation: Mathematical models take an important place in science and engineering. A model can help scientists to explain dynamic behavior of a system and to understand the functionality of system components. Since length of a time series and number of replicates is limited by the cost of experiments, Boolean networks as a structurally simple and parameter-free logical model for gene regulatory networks have attracted interests of many scientists. In order to fit into the biological contexts and to lower the data requirements, biological prior knowledge is taken into consideration during the inference procedure. In the literature, the existing identification approaches can only deal with a subset of possible types of prior knowledge. Results: We propose a new approach to identify Boolean networks from time series data incorporating prior knowledge, such as partial network structure, canalizing property, positive and negative unateness. Using vector form of Boolean variables and applying a generalized matrix multiplication called the semi-tensor product (STP), each Boolean function can be equivalently converted into a matrix expression. Based on this, the identification problem is reformulated as an integer linear programming problem to reveal the system matrix of Boolean model in a computationally efficient way, whose dynamics are consistent with the important dynamics captured in the data. By using prior knowledge the number of candidate functions can be reduced during the inference. Hence, identification incorporating prior knowledge is especially suitable for the case of small size time series data and data without sufficient stimuli. The proposed approach is illustrated with the help of a biological model of the network of oxidative stress response. Conclusions: The combination of efficient reformulation of the identification problem with the possibility to incorporate various types of prior knowledge enables the application of computational model inference to systems with limited amount of time series data. The general applicability of this methodological approach makes it suitable for a variety of biological systems and of general interest for biological and medical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA