Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 206(4): 904-916, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33441438

RESUMO

Age-related chronic inflammation promotes cellular senescence, chronic disease, cancer, and reduced lifespan. In this study, we wanted to explore the effects of a moderate exercise regimen on inflammatory liver disease and tumorigenesis. We used an established model of spontaneous inflammaging, steatosis, and cancer (nfkb1-/- mouse) to demonstrate whether 3 mo of moderate aerobic exercise was sufficient to suppress liver disease and cancer development. Interventional exercise when applied at a relatively late disease stage was effective at reducing tissue inflammation (liver, lung, and stomach), oxidative damage, and cellular senescence, and it reversed hepatic steatosis and prevented tumor development. Underlying these benefits were transcriptional changes in enzymes driving the conversion of tryptophan to NAD+, this leading to increased hepatic NAD+ and elevated activity of the NAD+-dependent deacetylase sirtuin. Increased SIRT activity was correlated with enhanced deacetylation of key transcriptional regulators of inflammation and metabolism, NF-κB (p65), and PGC-1α. We propose that moderate exercise can effectively reprogram pre-established inflammatory and metabolic pathologies in aging with the benefit of prevention of disease.


Assuntos
Envelhecimento/imunologia , Carcinogênese/imunologia , Fígado Gorduroso/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Condicionamento Físico Animal , Envelhecimento/genética , Envelhecimento/patologia , Animais , Carcinogênese/patologia , Senescência Celular/imunologia , Fígado Gorduroso/imunologia , Fígado Gorduroso/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/imunologia
2.
Immunity ; 38(5): 998-1012, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23684987

RESUMO

At sites of inflammation, certain regulatory T cells (Treg cells) can undergo rapid reprogramming into helper-like cells without loss of the transcription factor Foxp3. We show that reprogramming is controlled by downregulation of the transcription factor Eos (Ikzf4), an obligate corepressor for Foxp3. Reprogramming was restricted to a specific subset of "Eos-labile" Treg cells that was present in the thymus and identifiable by characteristic surface markers and DNA methylation. Mice made deficient in this subset became impaired in their ability to provide help for presentation of new antigens to naive T cells. Downregulation of Eos required the proinflammatory cytokine interleukin-6 (IL-6), and mice lacking IL-6 had impaired development and function of the Eos-labile subset. Conversely, the immunoregulatory enzyme IDO blocked loss of Eos and prevented the Eos-labile Treg cells from reprogramming. Thus, the Foxp3(+) lineage contains a committed subset of Treg cells capable of rapid conversion into biologically important helper cells.


Assuntos
Proteínas de Transporte/metabolismo , Fator de Transcrição Ikaros/metabolismo , Interleucina-6/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-6/genética , Ativação Linfocitária/imunologia , Camundongos , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Timo
3.
Am J Transplant ; 21(4): 1402-1414, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32506663

RESUMO

Ex vivo normothermic machine perfusion (NMP) of donor kidneys prior to transplantation provides a platform for direct delivery of cellular therapeutics to optimize organ quality prior to transplantation. Multipotent Adult Progenitor Cells (MAPC® ) possess potent immunomodulatory properties that could minimize ischemia reperfusion injury. We investigated the potential capability of MAPC cells in kidney NMP. Pairs (5) of human kidneys, from the same donor, were simultaneously perfused for 7 hours. Kidneys were randomly allocated to receive MAPC treatment or control. Serial samples of perfusate, urine, and tissue biopsies were taken for comparison. MAPC-treated kidneys demonstrated improved urine output (P = .009), decreased expression of injury biomarker NGAL (P = .012), improved microvascular perfusion on contrast-enhanced ultrasound (cortex P = .019, medulla P = .001), downregulation of interleukin (IL)-1ß (P = .050), and upregulation of IL-10 (P < .047) and Indolamine-2, 3-dioxygenase (P = .050). A chemotaxis model demonstrated decreased neutrophil recruitment when stimulated with perfusate from MAPC-treated kidneys (P < .001). Immunofluorescence revealed prelabeled MAPC cells in the perivascular space of kidneys during NMP. We report the first successful delivery of cellular therapy to a human kidney during NMP. Kidneys treated with MAPC cells demonstrate improvement in clinically relevant parameters and injury biomarkers. This novel method of cell therapy delivery provides an exciting opportunity to recondition organs prior to transplantation.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Rim , Transplante de Rim/efeitos adversos , Preservação de Órgãos , Perfusão , Traumatismo por Reperfusão/prevenção & controle
4.
Immunology ; 158(4): 353-361, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557322

RESUMO

Reagents that activate the signaling adaptor stimulator of interferon genes (STING) suppress experimentally induced autoimmunity in murine models of multiple sclerosis and arthritis. In this study, we evaluated STING agonists as potential reagents to inhibit spontaneous autoimmune type I diabetes (T1D) onset in non-obese diabetic (NOD) female mice. Treatments with DNA nanoparticles (DNPs), which activate STING when cargo DNA is sensed, delayed T1D onset and reduced T1D incidence when administered before T1D onset. DNP treatment elevated indoleamine 2,3 dioxygenase (IDO) activity, which regulates T-cell immunity, in spleen, pancreatic lymph nodes and pancreas of NOD mice. Therapeutic responses to DNPs were partially reversed by inhibiting IDO and DNP treatment synergized with insulin therapy to further delay T1D onset and reduce T1D incidence. Treating pre-diabetic NOD mice with cyclic guanyl-adenyl dinucleotide (cGAMP) to activate STING directly delayed T1D onset and stimulated interferon-αß (IFN-αß), while treatment with cyclic diguanyl nucleotide (cdiGMP) did not delay T1D onset or induce IFN-αß in NOD mice. DNA sequence analyses revealed that NOD mice possess a STING polymorphism that may explain differential responses to cGAMP and cdiGMP. In summary, STING agonists attenuate T1D progression and DNPs enhance therapeutic responses to insulin therapy.


Assuntos
DNA/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/uso terapêutico , Proteínas de Membrana/agonistas , Nanopartículas/uso terapêutico , Linfócitos T/imunologia , Animais , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , DNA/química , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Nanopartículas/química , Nucleotídeos Cíclicos/metabolismo , Polimorfismo Genético , Regulação para Cima
5.
J Immunol ; 198(6): 2286-2301, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28193829

RESUMO

The transmembrane protein CD83, expressed on APCs, B cells, and T cells, can be expressed as a soluble form generated by alternative splice variants and/or by shedding. Soluble CD83 (sCD83) was shown to be involved in negatively regulating the immune response. sCD83 inhibits T cell proliferation in vitro, supports allograft survival in vivo, prevents corneal transplant rejection, and attenuates the progression and severity of autoimmune diseases and experimental colitis. Although sCD83 binds to human PBMCs, the specific molecules that bind sCD83 have not been identified. In this article, we identify myeloid differentiation factor-2 (MD-2), the coreceptor within the TLR4/MD-2 receptor complex, as the high-affinity sCD83 binding partner. TLR4/MD-2 mediates proinflammatory signal delivery following recognition of bacterial LPSs. However, altering TLR4 signaling can attenuate the proinflammatory cascade, leading to LPS tolerance. Our data show that binding of sCD83 to MD-2 alters this signaling cascade by rapidly degrading IL-1R-associated kinase-1, leading to induction of the anti-inflammatory mediators IDO, IL-10, and PGE2 in a COX-2-dependent manner. sCD83 inhibited T cell proliferation, blocked IL-2 secretion, and rendered T cells unresponsive to further downstream differentiation signals mediated by IL-2. Therefore, we propose the tolerogenic mechanism of action of sCD83 to be dependent on initial interaction with APCs, altering early cytokine signal pathways and leading to T cell unresponsiveness.


Assuntos
Antígenos CD/metabolismo , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Monócitos/imunologia , Linfócitos T/imunologia , Proliferação de Células , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Ativação Linfocitária , Antígeno 96 de Linfócito/metabolismo , Ligação Proteica , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Antígeno CD83
6.
PLoS Pathog ; 12(5): e1005615, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168185

RESUMO

Increased pain sensitivity is a comorbidity associated with many clinical diseases, though the underlying causes are poorly understood. Recently, chronic pain hypersensitivity in rodents treated to induce chronic inflammation in peripheral tissues was linked to enhanced tryptophan catabolism in brain mediated by indoleamine 2,3 dioxygenase (IDO). Here we show that acute influenza A virus (IAV) and chronic murine leukemia retrovirus (MuLV) infections, which stimulate robust IDO expression in lungs and lymphoid tissues, induced acute or chronic pain hypersensitivity, respectively. In contrast, virus-induced pain hypersensitivity did not manifest in mice lacking intact IDO1 genes. Spleen IDO activity increased markedly as MuLV infections progressed, while IDO1 expression was not elevated significantly in brain or spinal cord (CNS) tissues. Moreover, kynurenine (Kyn), a tryptophan catabolite made by cells expressing IDO, incited pain hypersensitivity in uninfected IDO1-deficient mice and Kyn potentiated pain hypersensitivity due to MuLV infection. MuLV infection stimulated selective IDO expression by a discreet population of spleen cells expressing both B cell (CD19) and dendritic cell (CD11c) markers (CD19+ DCs). CD19+ DCs were more susceptible to MuLV infection than B cells or conventional (CD19neg) DCs, proliferated faster than B cells from early stages of MuLV infection and exhibited mature antigen presenting cell (APC) phenotypes, unlike conventional (CD19neg) DCs. Moreover, interactions with CD4 T cells were necessary to sustain functional IDO expression by CD19+ DCs in vitro and in vivo. Splenocytes from MuLV-infected IDO1-sufficient mice induced pain hypersensitivity in uninfected IDO1-deficient recipient mice, while selective in vivo depletion of DCs alleviated pain hypersensitivity in MuLV-infected IDO1-sufficient mice and led to rapid reduction in splenomegaly, a hallmark of MuLV immune pathogenesis. These findings reveal critical roles for CD19+ DCs expressing IDO in host responses to MuLV infection that enhance pain hypersensitivity and cause immune pathology. Collectively, our findings support the hypothesis elevated IDO activity in non-CNS due to virus infections causes pain hypersensitivity mediated by Kyn. Previously unappreciated links between host immune responses to virus infections and pain sensitivity suggest that IDO inhibitors may alleviate heightened pain sensitivity during infections.


Assuntos
Hiperalgesia/enzimologia , Hiperalgesia/etiologia , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Viroses/complicações , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Cinurenina/metabolismo , Camundongos , Reação em Cadeia da Polimerase
7.
J Immunol ; 194(4): 2011-21, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25560408

RESUMO

In recent years, the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the present study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4(+) T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelodepletion and leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum-resident calreticulin and extracellular release of high-mobility group box 1. Additionally, there was enhanced tumor Ag uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8(+) T cells and, more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4(+) T cells. Notably, the combination of melphalan and CD4(+) T cell adoptive cell therapy was more efficacious than either treatment alone in prolonging the survival of mice with advanced B cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan's immunostimulatory effects and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4(+) T cells.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Linfócitos T CD4-Positivos/transplante , Imunoterapia Adotiva/métodos , Melfalan/administração & dosagem , Neoplasias Experimentais/terapia , Animais , Western Blotting , Terapia Combinada , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
8.
Proc Natl Acad Sci U S A ; 111(11): 4215-20, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591636

RESUMO

Tolerance to apoptotic cells is essential to prevent inflammatory pathology. Though innate responses are critical for immune suppression, our understanding of early innate immunity driven by apoptosis is lacking. Herein we report apoptotic cells induce expression of the chemokine CCL22 in splenic metallophillic macrophages, which is critical for tolerance. Systemic challenge with apoptotic cells induced rapid production of CCL22 in CD169(+) (metallophillic) macrophages, resulting in accumulation and activation of FoxP3(+) Tregs and CD11c(+) dendritic cells, an effect that could be inhibited by antagonizing CCL22-driven chemotaxis. This mechanism was essential for suppression after apoptotic cell challenge, because neutralizing CCL22 or its receptor, reducing Treg numbers, or blocking effector mechanisms abrogated splenic TGF-ß and IL-10 induction; this promoted a shift to proinflammatory cytokines associated with a failure to suppress T cells. Similarly, CCR4 inhibition blocked long-term, apoptotic cell-induced tolerance to allografts. Finally, CCR4 inhibition resulted in a systemic breakdown of tolerance to self after apoptotic cell injection with rapid increases in anti-dsDNA IgG and immune complex deposition. Thus, the data demonstrate CCL22-dependent chemotaxis is a key early innate response required for apoptotic cell-induced suppression, implicating a previously unknown mechanism of macrophage-dependent coordination of early events leading to stable tolerance.


Assuntos
Apoptose/imunologia , Quimiocina CCL22/imunologia , Macrófagos/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Tolerância ao Transplante/imunologia , Animais , Movimento Celular/fisiologia , Quimiocina CCL22/metabolismo , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Imuno-Histoquímica , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR4/genética , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Tolerância ao Transplante/genética
9.
J Immunol ; 192(12): 5571-8, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24799564

RESUMO

Cytosolic DNA sensing activates the stimulator of IFN genes (STING) adaptor to induce IFN type I (IFN-αß) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown, leading to autoimmunity. In this study, we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the CNS and suppressed innate and adaptive immune responses to myelin oligodendrocyte glycoprotein immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFN-αß receptor genes, but not IFN-γ receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on IDO enzyme activity in hematopoietic cells. Thus, DNPs and cyclic diguanylate monophosphate attenuate EAE by inducing dominant T cell regulatory responses via the STING/IFN-αß/IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING/IFN-αß pathway in either stimulating or suppressing autoimmunity and identify STING-activating reagents as a novel class of immune modulatory drugs.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Interferons/imunologia , Proteínas de Membrana/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , DNA/genética , DNA/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Tolerância Imunológica/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interferons/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/toxicidade , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Transdução de Sinais/genética , Baço/imunologia , Baço/patologia , Linfócitos T Reguladores/patologia
10.
Immunol Rev ; 249(1): 135-57, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22889220

RESUMO

Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field.


Assuntos
Imunidade Adaptativa , Aminoácidos/metabolismo , Imunidade Inata , Animais , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Tolerância a Antígenos Próprios , Serina-Treonina Quinases TOR/metabolismo
11.
Eur J Immunol ; 44(10): 2847-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25143264

RESUMO

DNA is immunogenic and many cells express cytosolic DNA sensors that activate the stimulator of interferon genes (STING) adaptor to trigger interferon type I (IFN-ß) release, a potent immune activator. DNA sensing to induce IFN-ß triggers host immunity to pathogens but constitutive DNA sensing can induce sustained IFN-ß release that incites autoimmunity. Here, we focus on cytosolic DNA sensing via the STING/IFN-ß pathway that regulates immune responses. Recent studies reveal that cytosolic DNA sensing via the STING/IFN-ß pathway induces indoleamine 2,3 dioxygenase (IDO), which catabolizes tryptophan to suppress effector and helper T-cell responses and activate Foxp3-lineage CD4(+) regulatory T (Treg) cells. During homeostasis, and in some inflammatory settings, specialized innate immune cells in the spleen and lymph nodes may ingest and sense cytosolic DNA to reinforce tolerance that prevents autoimmunity. However, malignancies and pathogens may exploit DNA-induced regulatory responses to suppress natural and vaccine-induced immunity to malignant and infected cells. In this review, we discuss the biologic significance of regulatory responses to DNA and novel approaches to exploit DNA-induced immune responses for therapeutic benefit. The ability of DNA to drive tolerogenic or immunogenic responses highlights the need to evaluate immune responses to DNA in physiologic settings relevant to disease progression or therapy.


Assuntos
Citosol/metabolismo , DNA/imunologia , Transdução de Sinais/imunologia , Animais , Citosol/imunologia , Humanos , Interferons/genética , Linfócitos T/imunologia
12.
J Immunol ; 191(7): 3509-13, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986532

RESUMO

Cytosolic DNA sensing via the stimulator of IFN genes (STING) adaptor incites autoimmunity by inducing type I IFN (IFN-αß). In this study, we show that DNA is also sensed via STING to suppress immunity by inducing IDO. STING gene ablation abolished IFN-αß and IDO induction by dendritic cells (DCs) after DNA nanoparticle (DNP) treatment. Marginal zone macrophages, some DCs, and myeloid cells ingested DNPs, but CD11b(+) DCs were the only cells to express IFN-ß, whereas CD11b(+) non-DCs were major IL-1ß producers. STING ablation also abolished DNP-induced regulatory responses by DCs and regulatory T cells, and hallmark regulatory responses to apoptotic cells were also abrogated. Moreover, systemic cyclic diguanylate monophosphate treatment to activate STING induced selective IFN-ß expression by CD11b(+) DCs and suppressed Th1 responses to immunization. Thus, previously unrecognized functional diversity among physiologic innate immune cells regarding DNA sensing via STING is pivotal in driving immune responses to DNA.


Assuntos
DNA/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Proteínas de Membrana/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Animais , Antígeno CD11b/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , DNA/química , Epitopos de Linfócito T/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Nanopartículas/química , Células Th1/efeitos dos fármacos , Células Th1/imunologia
13.
J Immunol ; 188(10): 4913-20, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22516958

RESUMO

Nanoparticles containing DNA complexed with the cationic polymer polyethylenimine are efficient vehicles to transduce DNA into cells and organisms. DNA/polyethylenimine nanoparticles (DNPs) also elicit rapid and systemic release of proinflammatory cytokines that promote antitumor immunity. In this study, we report that DNPs possess previously unrecognized immunomodulatory attributes due to rapid upregulation of IDO enzyme activity in lymphoid tissues of mice. IDO induction in response to DNP treatment caused dendritic cells and regulatory T cells (Tregs) to acquire potent regulatory phenotypes. As expected, DNP treatment stimulated rapid increase in serum levels of IFN type I (IFN-αß) and II (IFN-γ), which are both potent IDO inducers. IDO-mediated Treg activation was dependent on IFN type I receptor signaling, whereas IFN-γ receptor signaling was not essential for this response. Moreover, systemic IFN-γ release was caused by TLR9-dependent activation of NK cells, whereas TLR9 signaling was not required for IFN-αß release. Accordingly, DNPs lacking immunostimulatory TLR9 ligands in DNA stimulated IFN-αß production, induced IDO, and promoted regulatory outcomes, but did not stimulate potentially toxic, systemic release of IFN-γ. DNP treatment to induce IDO and activate Tregs blocked Ag-specific T cell responses elicited in vivo following immunization and suppressed joint pathology in a model of immune-mediated arthritis. Thus, DNPs lacking TLR9 ligands may be safe and effective reagents to protect healthy tissues from immune-mediated destruction in clinical hyperimmune syndromes.


Assuntos
DNA Bacteriano/genética , DNA Bacteriano/uso terapêutico , Células Dendríticas/imunologia , Fatores Imunológicos/uso terapêutico , Ativação Linfocitária/imunologia , Nanopartículas/uso terapêutico , Linfócitos T Reguladores/imunologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Experimental/terapia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/terapia , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Citocinas/fisiologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Engenharia Genética/métodos , Imunofenotipagem , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polidesoxirribonucleotídeos/uso terapêutico , Polietilenoimina/uso terapêutico , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/patologia
14.
J Immunol ; 188(10): 5116-22, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22491249

RESUMO

Intracellular pattern recognition receptors such as the nucleotide-binding oligomerization domain (NOD)-like receptors family members are key for innate immune recognition of microbial infection and may play important roles in the development of inflammatory diseases, including rheumatic diseases. In this study, we evaluated the role of NOD1 and NOD2 on development of experimental arthritis. Ag-induced arthritis was generated in wild-type, NOD1(-/-), NOD2(-/-), or receptor-interacting serine-threonine kinase 2(-/-) (RIPK2(-/-)) immunized mice challenged intra-articularly with methylated BSA. Nociception was determined by electronic Von Frey test. Neutrophil recruitment and histopathological analysis of proteoglycan lost was evaluated in inflamed joints. Joint levels of inflammatory cytokine/chemokine were measured by ELISA. Cytokine (IL-6 and IL-23) and NOD2 expressions were determined in mice synovial tissue by RT-PCR. The NOD2(-/-) and RIPK2(-/-), but not NOD1(-/-), mice are protected from Ag-induced arthritis, which was characterized by a reduction in neutrophil recruitment, nociception, and cartilage degradation. NOD2/RIPK2 signaling impairment was associated with a reduction in proinflammatory cytokines and chemokines (TNF, IL-1ß, and CXCL1/KC). IL-17 and IL-17 triggering cytokines (IL-6 and IL-23) were also reduced in the joint, but there is no difference in the percentage of CD4(+) IL-17(+) cells in the lymph node between arthritic wild-type and NOD2(-/-) mice. Altogether, these findings point to a pivotal role of the NOD2/RIPK2 signaling in the onset of experimental arthritis by triggering an IL-17-dependent joint immune response. Therefore, we could propose that NOD2 signaling is a target for the development of new therapies for the control of rheumatoid arthritis.


Assuntos
Artrite Experimental/imunologia , Interleucina-17/metabolismo , Articulação do Joelho/imunologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Transdução de Sinais/imunologia , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Bovinos , Células Cultivadas , Interleucina-17/fisiologia , Articulação do Joelho/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Soroalbumina Bovina/imunologia , Soroalbumina Bovina/toxicidade , Transdução de Sinais/genética
15.
Sci Immunol ; 9(95): eade5705, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787962

RESUMO

Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.


Assuntos
Imunodeficiência Combinada Severa , Recombinação V(D)J , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Animais , Camundongos , Recombinação V(D)J/imunologia , Recombinação V(D)J/genética , Masculino , Feminino , Lactente , Linfócitos B/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Linfócitos T/imunologia , Pré-Escolar , Mutação de Sentido Incorreto
16.
Schizophr Res ; 252: 88-95, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634452

RESUMO

INTRODUCTION: The clinical course of schizophrenia is often characterized by recurrent relapses. Blood inflammatory markers are altered in acute psychosis, and may be state markers for illness relapse in schizophrenia. Few studies have investigated longitudinal, intra-individual changes in inflammatory markers as a predictor of relapse. In the present study, we explored this association in a relapse prevention trial in patients with schizophrenia. METHODS: We analyzed blood inflammatory markers in 200 subjects, with a mean 11 samples per subject, during the 30 month Preventing Relapse in schizophrenia: Oral Antipsychotics Compared to Injectable: eValuating Efficacy (PROACTIVE) trial. Associations between longitudinal changes in inflammatory markers and relapse were analyzed using a within-subjects design. RESULTS: 70 (35 %) of subjects relapsed during the study period. There were no significant differences in mean inflammatory marker levels based on relapse status (yes/no). Baseline levels of inflammatory markers did not predict incident relapse. Among subjects who relapsed, there was a significant decrease in mean blood IL-6 (n = 38, p = 0.019) and IFN-γ (n = 44, p = 0.012) levels from the visit before the relapse to the visit after relapse. CONCLUSION: Although there was some evidence for inflammation as a potential state marker for acute psychosis, we did not find significant evidence for its utility as a relapse-predictive marker.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Estudos Longitudinais , Transtornos Psicóticos/tratamento farmacológico , Antipsicóticos/uso terapêutico , Inflamação/tratamento farmacológico , Recidiva
17.
Biol Pharm Bull ; 35(10): 1818-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23037170

RESUMO

This study was designed to test the efficacy of eugenol, a compound obtained from the essential oil of cloves (Syzygium aromaticum) in collagen-induced arthritis (CIA), a well characterized murine model of rheumatoid arthritis. Macroscopic clinical evidence of CIA manifests first as periarticular erythema and edema in the hind paws. Treatment with eugenol starting at the onset of arthritis (day 25) ameliorated these clinical signs of CIA. Furthermore, eugenol inhibited mononuclear cell infiltration into the knee joints of arthritic mice and also lowered the levels of cytokines (tumor necrosis factor (TNF)-α, interferon (IFN)-γ and tumor growth factor (TGF)-ß) within the ankle joints. Eugenol treatment did not affect the in vitro cell viability as assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Therefore, eugenol ameliorates experimental arthritis and could be useful as a beneficial supplement in treating human arthritis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Eugenol/uso terapêutico , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Neutrófilos/efeitos dos fármacos
18.
Proc Natl Acad Sci U S A ; 106(14): 5954-9, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19289819

RESUMO

IL-23/IL-17-induced neutrophil recruitment plays a pivotal role in rheumatoid arthritis (RA). However, the mechanism of the neutrophil recruitment is obscure. Here we report that prostaglandin enhances the IL-23/IL-17-induced neutrophil migration in a murine model of RA by inhibiting IL-12 and IFN gamma production. Methylated BSA (mBSA) and IL-23-induced neutrophil migration was inhibited by anti-IL-23 and anti-IL-17 antibodies, COX inhibitors, IL-12, or IFNgamma but was enhanced by prostaglandin E(2) (PGE(2)). IL-23-induced IL-17 production was increased by PGE(2) and suppressed by COX-inhibition or IL-12. Furthermore, COX inhibition failed to reduce IL-23-induced neutrophil migration in IL-12- or IFNgamma-deficient mice. IL-17-induced neutrophil migration was not affected by COX inhibitors, IL-12, or IFNgamma but was inhibited by MK886 (a leukotriene synthesis inhibitor), anti-TNFalpha, anti-CXCL1, and anti-CXCL5 antibodies and by repertaxin (a CXCR1/2 antagonist). These treatments all inhibited mBSA- or IL-23-induced neutrophil migration. IL-17 induced neutrophil chemotaxis through a CXC chemokines-dependent pathway. Our results suggest that prostaglandin plays an important role in IL-23-induced neutrophil migration in arthritis by enhancing IL-17 synthesis and by inhibiting IL-12 and IFNgamma production. We thus provide a mechanism for the pathogenic role of the IL-23/IL-17 axis in RA and also suggest an additional mechanism of action for nonsteroidal anti-inflammatory drugs.


Assuntos
Artrite Reumatoide/patologia , Inflamação/metabolismo , Interferon gama/antagonistas & inibidores , Interleucina-12/antagonistas & inibidores , Interleucina-17/imunologia , Interleucina-23/imunologia , Infiltração de Neutrófilos/imunologia , Prostaglandinas/fisiologia , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/farmacologia , Interleucina-17/biossíntese , Camundongos
19.
J Infect Dis ; 203(5): 715-25, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21282196

RESUMO

Inflammation stimulates immunity but can create immune privilege in some settings. Here, we show that cutaneous Leishmania major infection stimulated expression of the immune regulatory enzyme indoleamine 2,3 dioxygenase (IDO) in local lymph nodes. Induced IDO attenuated the T cell stimulatory functions of dendritic cells and suppressed local T cell responses to exogenous and nominal parasite antigens. IDO ablation reduced local inflammation and parasite burdens, as did pharmacologic inhibition of IDO in mice with established infections. IDO ablation also enhanced local expression of proinflammatory cytokines and induced some CD4(+) T cells to express interleukin (IL) 17. These findings showed that IDO induced by L. major infection attenuated innate and adaptive immune responses. Thus, IDO acts as a molecular switch regulating host responses, and IDO inhibitor drugs are a potential new approach to enhance host immunity to established leishmania infections.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leishmania major/enzimologia , Leishmania major/imunologia , Leishmaniose Cutânea/parasitologia , Animais , Linfócitos T CD4-Positivos , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Interações Hospedeiro-Parasita , Interleucinas , Leishmaniose Cutânea/tratamento farmacológico , Linfonodos/enzimologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Subpopulações de Linfócitos T
20.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227694

RESUMO

Neuropathic pain is one of the most important clinical consequences of injury to the somatosensory system. Nevertheless, the critical pathophysiological mechanisms involved in neuropathic pain development are poorly understood. In this study, we found that neuropathic pain is abrogated when the kynurenine metabolic pathway (KYNPATH) initiated by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is ablated pharmacologically or genetically. Mechanistically, it was found that IDO1-expressing dendritic cells (DCs) accumulated in the dorsal root leptomeninges and led to an increase in kynurenine levels in the spinal cord. In the spinal cord, kynurenine was metabolized by kynurenine-3-monooxygenase-expressing astrocytes into the pronociceptive metabolite 3-hydroxykynurenine. Ultimately, 3-hydroxyanthranilate 3,4-dioxygenase-derived quinolinic acid formed in the final step of the canonical KYNPATH was also involved in neuropathic pain development through the activation of the glutamatergic N-methyl-D-aspartate receptor. In conclusion, these data revealed a role for DCs driving neuropathic pain development through elevation of the KYNPATH. This paradigm offers potential new targets for drug development against this type of chronic pain.


Assuntos
Cinurenina , Neuralgia , Animais , Camundongos , Cinurenina/metabolismo , Ácido Quinolínico/metabolismo , Redes e Vias Metabólicas , Células Dendríticas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA