Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 14(3): e1002364, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26938778

RESUMO

In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Interferons/fisiologia , MicroRNAs/metabolismo , Esteróis/biossíntese , Viroses/imunologia , Animais , Camundongos Endogâmicos C57BL
2.
RNA ; 16(3): 495-505, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20075166

RESUMO

MicroRNAs (miRNAs) are RNA sequences of approximately 22 nucleotides that mediate post-transcriptional regulation of specific mRNAs. miRNA sequences are dispersed throughout the genome and are classified as intergenic (between genes) or intronic (embedded into a gene). Intergenic miRNAs are expressed by their own promoter, and until recently, it was supposed that intronic miRNAs are transcribed from their host gene. Here, we performed a genomic analysis of currently known intronic miRNA regions and observed that approximately 35% of intronic miRNAs have upstream regulatory elements consistent with promoter function. Among all intronic miRNAs, 30% have associated Pol II regulatory elements, including transcription start sites, CpG islands, expression sequence tags, and conserved transcription factor binding sites, while 5% contain RNA Pol III regulatory elements (A/B box sequences). We cloned intronic regions encompassing miRNAs and their upstream Pol II (miR-107, miR-126, miR-208b, miR-548f-2, miR-569, and miR-590) or Pol III (miR-566 and miR-128-2) sequences into a promoterless plasmid, and confirmed that miRNA expression occurs independent of host gene transcription. For miR-128-2, a miRNA overexpressed in acute lymphoblastic leukemia, ChIP analysis suggests dual regulation by both intronic (Pol III) and host gene (Pol II) promoters. These data support complex regulation of intronic miRNA expression, and have relevance to disregulation in disease settings.


Assuntos
Íntrons , MicroRNAs/genética , Regiões Promotoras Genéticas , Região 5'-Flanqueadora , Animais , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo
3.
Sci Transl Med ; 11(523)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852800

RESUMO

Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , MicroRNAs/metabolismo , Neuropatologia/métodos , Esclerose Lateral Amiotrófica/genética , Animais , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Neurônios Motores/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA