Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37574586

RESUMO

Functional foods and their by-products contain a wide range of bioactive components with an array of health benefits and were proposed to improve public health, well-being, and others. To achieve a circular economy, the processing and extraction of flavonoids, phenolic compounds, and others from functional food and agri-food wastes will require the use of environmentally friendly, sustainable, and a low-cost solution. Extraction methods that can eliminate the use of organic solvents, suitable for use in the laboratory and production of extracts will be covered. This will include subcritical water extraction (SBE), pressurized hot water extraction (PHWE), supercritical fluid extraction (SFE), and others. Based on the selected analytical methods, the determination of the marker or bioactive compounds and chemical fingerprints will provide the control measures to identify the batch-to-batch variation of the composition of the functional food products obtained. The combination of chemical standardization with antioxidant assay, such as DPPH and ABTS+ will provide further information on the quality of the extracts. Lastly, to ascertain the biological and physiological relevance of the antioxidant properties of the target sample, treatment of the antioxidant compounds or extracts was carried out using cellular models, and validated using other experimental endpoints, such as metabolomics.

2.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085666

RESUMO

The formyl peptide receptor (FPR) family are a group of G-protein coupled receptors that play an important role in the regulation of inflammatory processes. It is well-established that activation of FPRs can have cardioprotective properties. Recently, more stable small-molecule FPR1/2 agonists have been described, including both Compound 17b (Cmpd17b) and Compound 43 (Cmpd43). Both agonists activate a range of signals downstream of FPR1/2 activation in human-engineered FPR-expressing cells, including ERK1/2 and Akt. Importantly, Cmpd17b (but not Cmpd43) favours bias away from intracellular Ca2+ mobilisation in this context, which has been associated with greater cardioprotection in response to Cmpd17b over Cmpd43. However, it is unknown whether these FPR agonists impact vascular physiology and/or elicit vasoprotective effects in the context of diabetes. First, we localized FPR1 and FPR2 receptors predominantly in vascular smooth muscle cells in the aortae of male C57BL/6 mice. We then analysed the vascular effects of Cmpd17b and Cmpd43 on the aorta using wire-myography. Cmpd17b but not Cmpd43 evoked a concentration-dependent relaxation of the mouse aorta. Removal of the endothelium or blockade of endothelium-derived relaxing factors using pharmacological inhibitors had no effect on Cmpd17b-evoked relaxation, demonstrating that its direct vasodilator actions were endothelium-independent. In aortae primed with elevated K+ concentration, increasing concentrations of CaCl2 evoked concentration-dependent contraction that is abolished by Cmpd17b, suggesting the involvement of the inhibition of Ca2+ mobilisation via voltage-gated calcium channels. Treatment with Cmpd17b for eight weeks reversed endothelial dysfunction in STZ-induced diabetic aorta through the upregulation of vasodilator prostanoids. Our data indicate that Cmpd17b is a direct endothelium-independent vasodilator, and a vasoprotective molecule in the context of diabetes.


Assuntos
Anexina A1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Aorta/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Substâncias Protetoras/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Formil Peptídeo/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Estreptozocina , Vasodilatadores/farmacologia
3.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R753-R760, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412692

RESUMO

The peptide hormone relaxin has numerous roles both within and independent of pregnancy and is often thought of as a "pleiotropic hormone." Relaxin targets several tissues throughout the body, and has many functions associated with extracellular matrix remodeling and the vasculature. This review considers the potential therapeutic applications of relaxin in cervical ripening, in vitro fertilization, preeclampsia, acute heart failure, ischemia-reperfusion, and cirrhosis. We first outline the animal models used in preclinical studies to progress relaxin into clinical trials and then discuss the findings from these studies. In many cases, the positive outcomes from preclinical animal studies were not replicated in human clinical trials. Therefore, the focus of this review is to evaluate the various animal models used to develop relaxin as a potential therapeutic and consider the limitations that must be addressed in future studies. These include the use of human relaxin in animals, duration of relaxin treatment, and the appropriateness of the clinical conditions being considered for relaxin therapy.


Assuntos
Relaxina/farmacologia , Relaxina/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hepatopatias/tratamento farmacológico , Gravidez , Relaxina/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico
4.
Microcirculation ; 24(6)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28370794

RESUMO

BACKGROUND: Short-term IV sRLX (recombinant human relaxin-2) infusion enhances endothelium-dependent relaxation in mesenteric arteries. This is initially underpinned by increased NO followed by a transition to prostacyclin. The effects of short-term IV sRLX treatment on pressure-induced myogenic tone and vascular remodeling in these arteries are unknown. Therefore, we investigated the effects of sRLX infusion on pressure-induced myogenic tone and passive mechanical wall properties in mesenteric arteries. METHODS: Mesenteric artery myogenic tone and passive mechanics were examined after 48-hours and 10-days infusion of sRLX. Potential mechanisms of action were assessed by pressure myography, qPCR, and Western blot analysis. RESULTS: Neither 48-hours nor 10-days sRLX treatment had significant effects on myogenic tone, passive arterial wall stiffness, volume compliance, or axial lengthening. However, in 48-hours sRLX -treated rats, incubation with the NO synthase blocker L-NAME significantly increased myogenic tone (P<.05 vs placebo), demonstrating an increased contribution of NO to the regulation of myogenic tone. eNOS dimerization, but not phosphorylation, was significantly upregulated in the arteries of sRLX -treated rats. CONCLUSION: In mesenteric arteries, 48-hours sRLX treatment upregulates the role of NO in the regulation of myogenic tone by enhancing eNOS dimerization, without altering overall myogenic tone or vascular remodeling.


Assuntos
Artérias Mesentéricas/efeitos dos fármacos , Tono Muscular/efeitos dos fármacos , Relaxina/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Multimerização Proteica , Ratos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Relaxina/administração & dosagem , Fatores de Tempo
5.
Biol Reprod ; 96(4): 895-906, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379296

RESUMO

The peptide relaxin has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in cardiovascular disease. In this study, we tested the hypothesis that relaxin treatment alleviates systemic vascular dysfunction characteristic of hypertensive diseases of pregnancy. We investigated vascular effects and mechanisms of relaxin action in (i) pregnant relaxin-deficient (Rln-/-) mice with enhanced responses to angiotensin II (AngII) and (ii) arteries pre-incubated ex vivo in trophoblast conditioned media (TCM) to induce endothelial dysfunction. Pregnant Rln-/- mice received 0.5 µg/h recombinant human H2 relaxin (rhRLX: n = 5) or placebo (20 nM sodium acetate; n = 7) subcutaneously via osmotic minipumps for 5 days prior to gestational day 17.5. This treatment protocol significantly reduced AngII-mediated contraction of mesenteric arteries and increased plasma 6-keto prostaglandin F1α. These vascular effects were endothelium independent and likely involve smooth muscle-derived vasodilator prostanoids. In the second study, mesenteric arteries were incubated ex vivo for 24 h at 37°C in TCM, which contained high levels of soluble Flt-1 (>20 ng/ml) and soluble Eng (>1 ng/ml). TCM incubation caused significant reduction in endothelium-dependent relaxation and increased sensitivity to AngII. Co-incubation of arteries with rhRLX for 24 h (n = 6-16/treatment) prevented endothelial dysfunction but had no effect on AngII-mediated contraction. In conclusion, relaxin treatment prevents and/or reverses vascular dysfunction in mesenteric arteries, but acts through different vascular pathways depending on duration of relaxin treatment and type of vascular dysfunction. Overall, our data suggest that relaxin is a potential therapeutic to alleviate maternal systemic vascular dysfunction associated with hypertensive diseases in pregnant women.


Assuntos
Angiotensina II/farmacologia , Endotélio Vascular/efeitos dos fármacos , Relaxina/farmacologia , Vasoconstrição/fisiologia , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Gravidez
6.
Am J Physiol Regul Integr Comp Physiol ; 310(9): R847-57, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26936785

RESUMO

Pregnancy is associated with reduced peripheral vascular resistance, underpinned by changes in endothelial and smooth muscle function. Failure of the maternal vasculature to adapt correctly leads to serious pregnancy complications, such as preeclampsia. The peptide hormone relaxin regulates the maternal renal vasculature during pregnancy; however, little is known about its effects in other vascular beds. This study tested the hypothesis that functional adaptation of the mesenteric and uterine arteries during pregnancy will be compromised in relaxin-deficient (Rln(-/-)) mice. Smooth muscle and endothelial reactivity were examined in small mesenteric and uterine arteries of nonpregnant (estrus) and late-pregnant (day 17.5) wild-type (Rln(+/+)) and Rln(-/-) mice using wire myography. Pregnancy per se was associated with significant reductions in contraction to phenylephrine, endothelin-1, and ANG II in small mesenteric arteries, while sensitivity to endothelin-1 was reduced in uterine arteries of Rln(+/+) mice. The normal pregnancy-associated attenuation of ANG II-mediated vasoconstriction in mesenteric arteries did not occur in Rln(-/-) mice. This adaptive failure was endothelium-independent and did not result from altered expression of ANG II receptors or regulator of G protein signaling 5 (Rgs5) or increases in reactive oxygen species generation. Inhibition of nitric oxide synthase with l-NAME enhanced ANG II-mediated contraction in mesenteric arteries of both genotypes, whereas blockade of prostanoid production with indomethacin only increased ANG II-induced contraction in arteries of pregnant Rln(+/+) mice. In conclusion, relaxin deficiency prevents the normal pregnancy-induced attenuation of ANG II-mediated vasoconstriction in small mesenteric arteries. This is associated with reduced smooth muscle-derived vasodilator prostanoids.


Assuntos
Adaptação Fisiológica/fisiologia , Angiotensina II/metabolismo , Artérias Mesentéricas/fisiologia , Prenhez , Relaxina/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Gravidez , Prenhez/fisiologia , Receptores de Angiotensina/fisiologia , Relaxina/genética , Artéria Uterina/fisiologia , Vasodilatação/fisiologia
7.
Pharmacol Res ; 107: 220-228, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26993102

RESUMO

Diabetes-induced endothelial dysfunction is a critical initiating factor in the development of cardiovascular complications. Treatment with relaxin improves tumour necrosis factor α-induced endothelial dysfunction by enhancing endothelial nitric oxide synthase (eNOS) activity and restoring superoxide dismutase 1 protein in rat aortic rings ex vivo. It is, therefore, possible that relaxin treatment could alleviate endothelial dysfunction in diabetes. This study aimed to test the hypothesis that serelaxin (recombinant human relaxin-2) prevents high glucose-induced vascular dysfunction in the mouse aorta. Abdominal aortae were isolated from C57BL/6 male mice and incubated in M199 media for 3days with either normal glucose (5.5mM) or high glucose (30mM), and co-incubated with placebo (20mM sodium acetate) or 10nM serelaxin at 37°C in 5% CO2. Vascular function was analysed using wire-myography. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh) (pEC50; normal glucose=7.66±0.10 vs high glucose=7.29±0.10, n=11-12, P<0.05) and the contraction induced by NOS inhibitor, L-NAME (200µM) (normal glucose=59.9±8.3% vs high glucose=38.7±4.3%, n=6, P<0.05), but had no effect on the endothelium-independent agonist, sodium nitroprusside (SNP)-mediated relaxation. Treatment with serelaxin restored endothelial function (pEC50; 7.83±0.11, n=11) but not NO availability. The presence of the cyclooxygenase (COX) inhibitor, indomethacin (1µM) (pEC50; control=7.29±0.10 vs indo=7.74±0.18, n=6-12, P<0.05) and a superoxide dismutase mimetic, tempol (10µM) (pEC50; control=7.29±0.10 vs tempol=7.82±0.05, n=6-12, P<0.01) significantly improved sensitivity to ACh in high glucose treated aortae, but had no effect in serelaxin treated aortae. This suggests that high glucose incubation alters the superoxide and COX-sensitive pathway, which was normalized by co-incubation with serelaxin. Neither high glucose incubation nor serelaxin treatment had an effect on cyclooxygenase 1 and 2 (Ptgs1, Ptgs2), prostacyclin synthase (PTGIS) and receptor (Ptgir) as well as thromboxane A2 receptor (Tbxa2r) mRNA expression. Importantly, production of prostacyclin was significantly (P<0.05) attenuated in high glucose treated aortae, which was prevented by serelaxin treatment. Our data show that serelaxin treatment for 3 days restores high glucose-induced endothelial dysfunction by ameliorating vasodilator prostacyclin production and possibly through the reduction of superoxide in the mouse aorta.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aorta Torácica/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Epoprostenol/metabolismo , Relaxina/farmacologia , Acetilcolina/farmacologia , Animais , Aorta Abdominal/fisiologia , Aorta Torácica/fisiologia , Óxidos N-Cíclicos/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Glucose/farmacologia , Humanos , Técnicas In Vitro , Indometacina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitroprussiato/farmacologia , Proteínas Recombinantes/farmacologia , Marcadores de Spin , Vasodilatadores/farmacologia
8.
Pharmacol Res ; 111: 325-335, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27363948

RESUMO

Increased vascular stiffness and reduced endothelial nitric oxide (NO) bioavailability are characteristic of diabetes. Whether these are evident at a more moderate levels of hyperglycaemia has not been investigated. The objectives of this study were to examine the association between the level of glycaemia and resistance vasculature phenotype, incorporating both arterial stiffness and endothelial function. Diabetes was induced in male Sprague Dawley rats with streptozotocin (STZ; 55mg/kg i.v.) and followed for 8 weeks. One week post STZ, diabetic rats were allocated to either moderate (∼20mM blood glucose, 6-7U/insulins.c. daily) or severe hyperglycaemia (∼30mM blood glucose, 1-2U/insulins.c. daily as required). At study end, rats were anesthetized, and the mesenteric arcade was collected. Passive mechanical wall properties were assessed by pressure myography. Responses to the endothelium-dependent vasodilator acetylcholine (ACh) were assessed using wire myography. Our results demonstrated for the first time that mesenteric arteries from both moderate and severely hyperglycaemic diabetic rats exhibited outward hypertrophic remodelling and increased axial stiffness compared to arteries from non-diabetic rats. Secondly, mesenteric arteries from severely (∼30mM blood glucose), but not moderately hyperglycaemic (∼20mM blood glucose) rats exhibit a significant reduction to ACh sensitivity compared to their non-diabetic counterparts. This endothelial dysfunction was associated with significant reduction in endothelium-derived hyperpolarisation and endothelium-dependent NO-mediated relaxation. Interestingly, endothelium-derived nitroxyl (HNO)-mediated relaxation was intact. Therefore, moderate hyperglycaemia is sufficient to induce adverse structural changes in the mesenteric vasculature, but more severe hyperglycaemia is essential to cause endothelial dysfunction.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Angiopatias Diabéticas/etiologia , Endotélio Vascular/fisiopatologia , Artérias Mesentéricas/fisiopatologia , Remodelação Vascular , Rigidez Vascular , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/fisiopatologia , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Resistência Vascular , Vasodilatação , Vasodilatadores/farmacologia
9.
Am J Physiol Heart Circ Physiol ; 309(2): H285-96, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25957220

RESUMO

The vascular effects of exogenous relaxin (Rln) treatment are well established and include decreased myogenic reactivity and enhanced relaxation responses to vasodilators in small resistance arteries. These vascular responses are reduced in older animals, suggesting that Rln is less effective in mediating arterial function with aging. The present study investigated the role of endogenous Rln in the aorta and the possibility that vascular dysfunction occurs more rapidly with aging in Rln-deficient (Rln(-/-)) mice. We compared vascular function and underlying vasodilatory pathways in the aorta of male wild-type (Rln(+/+)) and Rln(-/-) mice at 4 and 16 mo of age using wire myography. Superoxide production, but not nitrotyrosine or NADPH oxidase expression, was significantly increased in the aorta of young Rln(-/-) mice, whereas endothelial nitric oxide (NO) synthase and basal NO availability were both significantly decreased compared with Rln(+/+) mice. In the presence of the cyclooxygenase inhibitor indomethacin, sensitivity to ACh was significantly decreased in young Rln(-/-) mice, demonstrating altered NO-mediated relaxation that was normalized in the presence of a membrane-permeable SOD or ROS scavenger. These vascular phenotypes were not exacerbated in old Rln(-/-) mice and, in most cases, did not differ significantly from old Rln(+/+) mice. Despite the vascular phenotypes in Rln(-/-) mice, endothelium-dependent and -independent vasodilation were not adversely affected. Our data show a role for endogenous Rln in reducing superoxide production and maintaining NO availability in the aorta but also demonstrate that Rln deficiency does not compromise vascular function in this artery or exacerbate endothelial dysfunction associated with aging.


Assuntos
Aorta/metabolismo , Óxido Nítrico/metabolismo , Relaxina/deficiência , Superóxidos/metabolismo , Vasodilatação , Fatores Etários , Animais , Aorta/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Relação Dose-Resposta a Droga , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/genética , Fatores Sexuais , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
FASEB J ; 28(1): 275-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036884

RESUMO

Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (P<0.05) RXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (P<0.01) RXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 µg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (P<0.001) enhanced bradykinin (BK)-mediated relaxation in mesenteric arteries, involving enhanced nitric oxide but not endothelium-derived hyperpolarization or vasodilatory prostanoids. In conclusion, there is differential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.


Assuntos
Artérias/efeitos dos fármacos , Artérias/metabolismo , Bradicinina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/farmacologia , Veias/efeitos dos fármacos , Veias/metabolismo , Animais , Endotélio Vascular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Ratos , Ratos Wistar
11.
J Cardiovasc Pharmacol ; 65(6): 532-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25387248

RESUMO

As flavonols are present in fruits and vegetables, they are consumed in considerable amounts in the diet. There is growing evidence that the well-recognized antioxidant, anti-inflammatory, and vasorelaxant actions of flavonols may, at least in part, result from modulation of biochemical signaling pathways and kinases. It is well established that diabetes is associated with increased cardiovascular morbidity and mortality. Despite clinical management of blood glucose levels, diabetes often results in cardiovascular disease. There is good evidence that endothelial dysfunction contributes significantly to the progression of diabetic cardiovascular diseases. This review describes the biological actions of flavonols that may ameliorate adverse cardiovascular events in diabetes. We discuss evidence that flavonols may be developed as novel pharmacological agents to prevent diabetes-induced vascular dysfunction.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Endotélio Vascular/efeitos dos fármacos , Flavonóis/uso terapêutico , Hipoglicemiantes/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/uso terapêutico
12.
Am J Physiol Heart Circ Physiol ; 304(5): H729-39, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23262135

RESUMO

Rats selectively bred for low (LCR) or high (HCR) intrinsic running capacity simultaneously present with contrasting risk factors for cardiovascular and metabolic disease. However, the impact of these phenotypes on left ventricular (LV) morphology and microvascular function, and their progression with aging, remains unresolved. We tested the hypothesis that the LCR phenotype induces progressive age-dependent LV remodeling and impairments in microvascular function, glucose utilization, and ß-adrenergic responsiveness, compared with HCR. Hearts and vessels isolated from female LCR (n = 22) or HCR (n = 26) were studied at 12 and 35 wk. Nonselected N:NIH founder rats (11 wk) were also investigated (n = 12). LCR had impaired glucose tolerance and elevated plasma insulin (but not glucose) and body-mass at 12 wk compared with HCR, with early LV remodeling. By 35 wk, LV prohypertrophic and glucose transporter GLUT4 gene expression were up- and downregulated, respectively. No differences in LV ß-adrenoceptor expression or cAMP content between phenotypes were observed. Macrovascular endothelial function was predominantly nitric oxide (NO)-mediated in both phenotypes and remained intact in LCR for both age-groups. In contrast, mesenteric arteries microvascular endothelial function, which was impaired in LCR rats regardless of age. At 35 wk, endothelial-derived hyperpolarizing factor-mediated relaxation was impaired whereas the NO contribution to relaxation is intact. Furthermore, there was reduced ß2-adrenoceptor responsiveness in both aorta and mesenteric LCR arteries. In conclusion, diminished intrinsic exercise capacity impairs systemic glucose tolerance and is accompanied by progressive development of LV remodeling. Impaired microvascular perfusion is a likely contributing factor to the cardiac phenotype.


Assuntos
Envelhecimento/fisiologia , Circulação Coronária/fisiologia , Tolerância ao Exercício/fisiologia , Coração/fisiologia , Remodelação Ventricular/fisiologia , Envelhecimento/genética , Animais , Fatores Biológicos/metabolismo , Tolerância ao Exercício/genética , Feminino , Fibrose/fisiopatologia , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Síndrome Metabólica/genética , Síndrome Metabólica/fisiopatologia , Microcirculação/fisiologia , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Fenótipo , Ratos , Ratos Endogâmicos , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/fisiologia , Resistência Vascular/fisiologia , Vasodilatação/fisiologia , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
13.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37111261

RESUMO

Trimethylamine N-oxide (TMAO) is a biologically active gut microbiome-derived dietary metabolite. Recent studies have shown that high circulating plasma TMAO levels are closely associated with diseases such as atherosclerosis and hypertension, and metabolic disorders such as diabetes and hyperlipidemia, contributing to endothelial dysfunction. There is a growing interest to understand the mechanisms underlying TMAO-induced endothelial dysfunction in cardio-metabolic diseases. Endothelial dysfunction mediated by TMAO is mainly driven by inflammation and oxidative stress, which includes: (1) activation of foam cells; (2) upregulation of cytokines and adhesion molecules; (3) increased production of reactive oxygen species (ROS); (4) platelet hyperreactivity; and (5) reduced vascular tone. In this review, we summarize the potential roles of TMAO in inducing endothelial dysfunction and the mechanisms leading to the pathogenesis and progression of associated disease conditions. We also discuss the potential therapeutic strategies for the treatment of TMAO-induced endothelial dysfunction in cardio-metabolic diseases.

14.
Biomed Pharmacother ; 162: 114578, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996678

RESUMO

BACKGROUND: The peptide hormone relaxin has potent anti-fibrotic and anti-inflammatory properties in various organs, including the kidneys. However, the protective effects of relaxin in the context of diabetic kidney complications remain controversial. Here, we aimed to evaluate the effects of relaxin treatment on key markers of kidney fibrosis, oxidative stress, and inflammation and their subsequent impact on bile acid metabolism in the streptozotocin-induced diabetes mouse model. METHODS AND RESULTS: Male mice were randomly allocated to placebo-treated control, placebo-treated diabetes or relaxin-treated diabetes groups (0.5 mg/kg/d, final 2 weeks of diabetes). After 12 weeks of diabetes or sham, the kidney cortex was harvested for metabolomic and gene expression analyses. Diabetic mice exhibited significant hyperglycaemia and increased circulating levels of creatine, hypoxanthine and trimethylamine N-oxide in the plasma. This was accompanied by increased expression of key markers of oxidative stress (Txnip), inflammation (Ccl2 and Il6) and fibrosis (Col1a1, Mmp2 and Fn1) in the diabetic kidney cortex. Relaxin treatment for the final 2 weeks of diabetes significantly reduced these key markers of renal fibrosis, inflammation, and oxidative stress in diabetic mice. Furthermore, relaxin treatment significantly increased the levels of bile acid metabolites, deoxycholic acid and sodium glycodeoxycholic acid, which may in part contribute to the renoprotective action of relaxin in diabetes. CONCLUSION: In summary, this study shows the therapeutic potential of relaxin and that it may be used as an adjunctive treatment for diabetic kidney complications.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Relaxina , Animais , Camundongos , Masculino , Nefropatias Diabéticas/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Relaxina/farmacologia , Estreptozocina/farmacologia , Rim , Estresse Oxidativo , Inflamação/tratamento farmacológico , Fibrose
15.
Sci Rep ; 13(1): 20303, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985702

RESUMO

Endothelial dysfunction is a critical initiating factor contributing to cardiovascular diseases, involving the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO). This study aims to clarify the time-dependent molecular pathways by which TMAO mediates endothelial dysfunction through transcriptomics and metabolomics analyses in human microvascular endothelial cells (HMEC-1). Cell viability and reactive oxygen species (ROS) generation were also evaluated. TMAO treatment for either 24H or 48H induces reduced cell viability and enhanced oxidative stress. Interestingly, the molecular signatures were distinct between the two time-points. Specifically, few Gene Ontology biological processes (BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were modulated after a short (24H) compared to a long (48H) treatment. However, the KEGG signalling pathways namely "tumour necrosis factor (TNF)" and "cytokine-cytokine receptor interaction" were downregulated at 24H but activated at 48H. In addition, at 48H, BPs linked to inflammatory phenotypes were activated (confirming KEGG results), while BPs linked to extracellular matrix (ECM) structural organisation, endothelial cell proliferation, and collagen metabolism were repressed. Lastly, metabolic profiling showed that arachidonic acid, prostaglandins, and palmitic acid were enriched at 48H. This study demonstrates that TMAO induces distinct time-dependent molecular signatures involving inflammation and remodelling pathways, while pathways such as oxidative stress are also modulated, but in a non-time-dependent manner.


Assuntos
Células Endoteliais , Doenças Vasculares , Humanos , Células Endoteliais/metabolismo , Metilaminas/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Óxidos
16.
Antioxidants (Basel) ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38001785

RESUMO

The mangosteen (Garcinia mangostana L.) pericarp is known to be rich in potent bioactive phytochemical compounds such as xanthones, which possess pharmacologically important antioxidant activity and beneficial cardiometabolic properties. Mangosteen pericarp is typically classified as unavoidable food waste and discarded, despite being rich in bioactive phytochemical compounds that therefore present an exciting opportunity for valorization. Thus, this study aims to extract phytochemical compounds from mangosteen pericarp using pressurized hot water extraction (PHWE) and determine its biological effects in endothelial cells using RNA sequencing. Liquid chromatography with MS/MS (LC/MSMS) and UV detection (LC/UV) was subsequently used to identify three key phytochemical compounds extracted from the mangosteen pericarp: α-Mangostin, γ-Mangostin, and Gartanin. Within the tested range of extraction temperatures by PHWE, our results demonstrated that an extraction temperature of 120 °C yielded the highest concentrations of α-Mangostin, γ-Mangostin, and Gartanin with a concomitant improvement in antioxidant capacity compared to other extraction temperatures. Using global transcriptomic profiling and bioinformatic analysis, the treatment of endothelial cells with mangosteen pericarp extracts (120 °C PHWE) for 48 h caused 408 genes to be differentially expressed. Furthermore, our results demonstrated that key biological processes related to "steroid biosynthesis and metabolism", likely involving the activation of the AMPK signaling pathway, were upregulated by mangosteen pericarp extract treatment. In conclusion, our study suggests a green extraction method to valorize phytochemical compounds from mangosteen pericarp as a natural product with potential beneficial effects on cardiometabolic health.

17.
Life Sci ; 320: 121542, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871935

RESUMO

AIMS: Endothelial dysfunction and arterial stiffness are hallmarks of hypertension, and major risk factors for cardiovascular disease. BPH/2J (Schlager) mice are a genetic model of spontaneous hypertension, but little is known about the vascular pathophysiology of these mice and the region-specific differences between vascular beds. Therefore, this study compared the vascular function and structure of large conductance (aorta and femoral) and resistance (mesenteric) arteries of BPH/2J mice with their normotensive BPN/2J counterparts. MAIN METHODS: Blood pressure was measured in BPH/2J and BPN/3J mice via pre-implanted radiotelemetry probes. At endpoint, vascular function and passive mechanical wall properties were assessed using wire and pressure myography, qPCR and histology. KEY FINDINGS: Mean arterial blood pressure was elevated in BPH/2J mice compared to BPN/3J controls. Endothelium-dependent relaxation to acetylcholine was attenuated in both the aorta and mesenteric arteries of BPH/2J mice, but through different mechanisms. In the aorta, hypertension reduced the contribution of prostanoids. Conversely, in the mesenteric arteries, hypertension reduced the contribution of both nitric oxide and endothelium-dependent hyperpolarization. Hypertension reduced volume compliance in both femoral and mesenteric arteries, but hypertrophic inward remodelling was only observed in the mesenteric arteries of BPH/2J mice. SIGNIFICANCE: This is the first comprehensive investigation of vascular function and structural remodelling in BPH/2J mice. Overall, hypertensive BPH/2J mice exhibited endothelial dysfunction and adverse vascular remodelling in the macro- and microvasculature, underpinned by distinct region-specific mechanisms. This highlights BPH/2J mice as a highly suitable model for evaluating novel therapeutics to treat hypertension-associated vascular dysfunction.


Assuntos
Hipertensão , Animais , Camundongos , Artérias/patologia , Pressão Sanguínea/fisiologia , Endotélio/patologia , Endotélio Vascular/patologia , Artérias Mesentéricas , Sistema Nervoso Simpático/fisiologia , Vasodilatação
18.
Int J Bioprint ; 9(5): 776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457944

RESUMO

Orange peels are often discarded as food waste despite being a nutritious source of vitamins and antioxidants. These orange peel wastes (OPW) are produced in millions of tons globally every year; discarding them results in detrimental environmental and economical impacts. This paper discusses the application of 3D printing technology to effectively upcycle the OPW into edible, healthy snacks for consumption. We aimed to develop a method to enable OPW to formulate 3D-printable inks for direct ink writing (DIW). Using DIW 3D printing, we successfully created edible constructs of rheologically modified inks containing OPW. The formulated ink possessed an initial viscosity of 22.5 kPa.s, a yield stress of 377 Pa, and a storage modulus of 44.24 kPa. To validate the method, we conducted a biochemical analysis of the OPW at each stage of the fabrication process. This study suggested that our ink formulation and 3D printing process did not affect the content of bioflavonoids and antioxidants of the OPW. The cell viability test using human dermal microvascular endothelium (HMEC-1) suggested that the OPW did not exhibit cytotoxicity throughout the entire process of the ink manipulation. Overall, this study has highlighted a potential scenario to revalorize food waste into the food value chain using 3D printing toward more sustainable and circular food manufacturing and consumption.

19.
Sci Rep ; 12(1): 13036, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906278

RESUMO

The pulp of avocado (Persea Americana) is widely consumed as the primary food source, while the seed is often discarded as food waste. Increased consumption of avocado would inevitably results in production of waste by-products such as avocado seeds, hence the ability to extract phytochemicals from such waste, and upcycling to potential nutraceutical products is of great interest. The overall aim of this study is to explore avocado seeds as potential functional food through the combined use of a green extraction method, chemical standardization and pattern recognition tools, and biological characterization assays. Specifically, this study utilized an organic solvent-free extraction method, pressurized hot water extraction (PHWE) to extract phytochemicals from avocado seeds and liquid chromatography mass spectrometry (LCMS) was used to identify the phytochemicals present in the avocado seeds. Our results demonstrated that avocado seed extracts have antioxidant activity and inhibited oxidative stress-induced metabolomics changes in endothelial cells, suggesting that avocado seed extracts have vasoprotective actions.


Assuntos
Persea , Eliminação de Resíduos , Antioxidantes/química , Células Endoteliais , Persea/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Sementes/química , Água/análise
20.
Antioxidants (Basel) ; 11(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139842

RESUMO

Orange peel waste (OPW) is known to contain an abundant amount of polyphenols compounds such as flavonoids, well-reported for their antioxidant and anti-inflammatory properties. While OPW is generally regarded as a food waste, the opportunity to extract bioactive compounds from these "wastes" arises due to their abundance, allowing the investigation of their potential effects on endothelial cells. Hence, this study aims to use a green extraction method and pressurized hot water extraction (PHWE) to extract bioactive compounds from OPW. Liquid chromatography with UV detection (LC/UV) and liquid chromatography mass spectrometry (LC/MS) were subsequently used to identify the bioactive compounds present. Through the optimization of the extraction temperature for PHWE, our results demonstrated that extraction temperatures of 60 °C and 80 °C yield distinct bioactive compounds and resulted in better antioxidant capacity compared to other extraction temperatures or organic solvent extraction. Despite having similar antioxidant capacity, their effects on endothelial cells were distinct. Specifically, treatment of endothelial cells with 60 °C OPW extracts inhibited TNFα-induced vascular inflammation and endothelial dysfunction in vitro, suggesting that OPW possess vasoprotective effects likely mediated by anti-inflammatory effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA