Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 83(13): 2357-2366.e8, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37295432

RESUMO

DNA replication preferentially initiates close to active transcription start sites (TSSs) in the human genome. Transcription proceeds discontinuously with an accumulation of RNA polymerase II (RNAPII) in a paused state near the TSS. Consequently, replication forks inevitably encounter paused RNAPII soon after replication initiates. Hence, dedicated machinery may be needed to remove RNAPII and facilitate unperturbed fork progression. In this study, we discovered that Integrator, a transcription termination machinery involved in the processing of RNAPII transcripts, interacts with the replicative helicase at active forks and promotes the removal of RNAPII from the path of the replication fork. Integrator-deficient cells have impaired replication fork progression and accumulate hallmarks of genome instability including chromosome breaks and micronuclei. The Integrator complex resolves co-directional transcription-replication conflicts to facilitate faithful DNA replication.


Assuntos
Replicação do DNA , RNA Polimerase II , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , DNA Helicases/genética , DNA Helicases/metabolismo , Instabilidade Genômica
2.
Mol Cell ; 82(18): 3350-3365.e7, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049481

RESUMO

It has been proposed that ATR kinase senses the completion of DNA replication to initiate the S/G2 transition. In contrast to this model, we show here that the TRESLIN-MTBP complex prevents a premature entry into G2 from early S-phase independently of ATR/CHK1 kinases. TRESLIN-MTBP acts transiently at pre-replication complexes (preRCs) to initiate origin firing and is released after the subsequent recruitment of CDC45. This dynamic behavior of TRESLIN-MTBP implements a monitoring system that checks the activation of replication forks and senses the rate of origin firing to prevent the entry into G2. This system detects the decline in the number of origins of replication that naturally occurs in very late S, which is the signature that cells use to determine the completion of DNA replication and permit the S/G2 transition. Our work introduces TRESLIN-MTBP as a key player in cell-cycle control independent of canonical checkpoints.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Proteínas de Ligação a DNA/genética
3.
Mol Cell ; 82(18): 3366-3381.e9, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002000

RESUMO

Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are characterized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to cancer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase transcription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.


Assuntos
Replicação do DNA , Rad51 Recombinase , Cromossomos/metabolismo , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fase S/genética , Transcrição Gênica
4.
Nucleic Acids Res ; 50(17): 9948-9965, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36099415

RESUMO

Mutations in the lamin A/C gene (LMNA) cause laminopathies such as the premature aging Hutchinson Gilford progeria syndrome (HGPS) and altered lamin A/C levels are found in diverse malignancies. The underlying lamin-associated mechanisms remain poorly understood. Here we report that lamin A/C-null mouse embryo fibroblasts (Lmna-/- MEFs) and human progerin-expressing HGPS fibroblasts both display reduced NAD+ levels, unstable mitochondrial DNA and attenuated bioenergetics. This mitochondrial dysfunction is associated with reduced chromatin recruitment (Lmna-/- MEFs) or low levels (HGPS) of PGC1α, the key transcription factor for mitochondrial homeostasis. Lmna-/- MEFs showed reduced expression of the NAD+-biosynthesis enzyme NAMPT and attenuated activity of the NAD+-dependent deacetylase SIRT1. We find high PARylation in lamin A/C-aberrant cells, further decreasing the NAD+ pool and consistent with impaired DNA base excision repair in both cell models, a condition that fuels DNA damage-induced PARylation under oxidative stress. Further, ATAC-sequencing revealed a substantially altered chromatin landscape in Lmna-/- MEFs, including aberrantly reduced accessibility at the Nampt gene promoter. Thus, we identified a new role of lamin A/C as a key modulator of mitochondrial function through impairments of PGC1α and the NAMPT-NAD+ pathway, with broader implications for the aging process.


Assuntos
Lamina Tipo A/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Progéria , Animais , Cromatina/metabolismo , DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Camundongos , Mitocôndrias/metabolismo , NAD/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Progéria/metabolismo , Sirtuína 1/genética
5.
Nature ; 537(7621): 548-552, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27626377

RESUMO

Maternal-to-zygotic transition (MZT) is essential for the formation of a new individual, but is still poorly understood despite recent progress in analysis of gene expression and DNA methylation in early embryogenesis. Dynamic histone modifications may have important roles in MZT, but direct measurements of chromatin states have been hindered by technical difficulties in profiling histone modifications from small quantities of cells. Recent improvements allow for 500 cell-equivalents of chromatin per reaction, but require 10,000 cells for initial steps or require a highly specialized microfluidics device that is not readily available. We developed a micro-scale chromatin immunoprecipitation and sequencing (µChIP-seq) method, which we used to profile genome-wide histone H3 lysine methylation (H3K4me3) and acetylation (H3K27ac) in mouse immature and metaphase II oocytes and in 2-cell and 8-cell embryos. Notably, we show that ~22% of the oocyte genome is associated with broad H3K4me3 domains that are anti-correlated with DNA methylation. The H3K4me3 signal becomes confined to transcriptional-start-site regions in 2-cell embryos, concomitant with the onset of major zygotic genome activation. Active removal of broad H3K4me3 domains by the lysine demethylases KDM5A and KDM5B is required for normal zygotic genome activation and is essential for early embryo development. Our results provide insight into the onset of the developmental program in mouse embryos and demonstrate a role for broad H3K4me3 domains in MZT.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Lisina/metabolismo , Oócitos/metabolismo , Zigoto/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Cromatina/genética , Imunoprecipitação da Cromatina , Desenvolvimento Embrionário/genética , Feminino , Genoma/genética , Histonas/química , Humanos , Masculino , Metilação , Camundongos , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição , Zigoto/citologia
6.
PLoS Genet ; 10(9): e1004574, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25254549

RESUMO

Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.


Assuntos
Dopamina/metabolismo , Regulação da Expressão Gênica , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Proteínas do Grupo Polycomb/genética , Transdução de Sinais , Ativação Transcricional , Animais , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Histonas/metabolismo , Levodopa/farmacologia , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Ligação Proteica , RNA Mensageiro/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
7.
Blood ; 121(1): 178-87, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23152544

RESUMO

The origin of aberrant DNA methylation in cancer remains largely unknown. In the present study, we elucidated the DNA methylome in primary acute promyelocytic leukemia (APL) and the role of promyelocytic leukemia-retinoic acid receptor α (PML-RARα) in establishing these patterns. Cells from APL patients showed increased genome-wide DNA methylation with higher variability than healthy CD34(+) cells, promyelocytes, and remission BM cells. A core set of differentially methylated regions in APL was identified. Age at diagnosis, Sanz score, and Flt3-mutation status characterized methylation subtypes. Transcription factor-binding sites (eg, the c-myc-binding sites) were associated with low methylation. However, SUZ12- and REST-binding sites identified in embryonic stem cells were preferentially DNA hypermethylated in APL cells. Unexpectedly, PML-RARα-binding sites were also protected from aberrant DNA methylation in APL cells. Consistent with this, myeloid cells from preleukemic PML-RARα knock-in mice did not show altered DNA methylation and the expression of PML-RARα in hematopoietic progenitor cells prevented differentiation without affecting DNA methylation. Treatment of APL blasts with all-trans retinoic acid also did not result in immediate DNA methylation changes. The results of the present study suggest that aberrant DNA methylation is associated with leukemia phenotype but is not required for PML-RARα-mediated initiation of leukemogenesis.


Assuntos
Metilação de DNA , DNA de Neoplasias/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Promielocítica Aguda/genética , Fatores de Transcrição/metabolismo , Animais , Transformação Celular Neoplásica/genética , Cromossomos Humanos/ultraestrutura , Ilhas de CpG , DNA de Neoplasias/metabolismo , Progressão da Doença , Técnicas de Introdução de Genes , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/fisiologia , Fenótipo , Complexo Repressor Polycomb 2/metabolismo , Pré-Leucemia/genética , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Repressoras/metabolismo , Tretinoína/uso terapêutico
8.
PLoS Genet ; 8(3): e1002494, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396653

RESUMO

Polycomb Repressive Complex (PRC) 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1, and PRC2 and show that RNF2 and REST co-regulate a number of neuronal genes in human teratocarcinoma cells (NT2-D1). Using NT2-D1 cells as a model of neuronal differentiation, we furthermore showed that retinoic-acid stimulation led to displacement of PRC1 at REST binding sites, reduced H3K27Me3, and increased gene expression. Genome-wide analysis of Polycomb binding in Rest⁻/⁻ and Eed⁻/⁻ mouse embryonic stem (mES) cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently of CpG islands and the H3K27Me3 mark. Surprisingly, PRC2 was frequently increased around Rest binding sites located in CpG-rich regions in the Rest⁻/⁻ mES cells, indicating a more complex interplay where Rest also can limit PRC2 recruitment. Therefore, we propose that Rest has context-dependent functions for PRC1- and PRC2- recruitment, which allows this transcription factor to act both as a recruiter of Polycomb as well as a limiting factor for PRC2 recruitment at CpG islands.


Assuntos
Diferenciação Celular , Ilhas de CpG/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Neurônios/metabolismo , Proteínas do Grupo Polycomb , Ligação Proteica , Teratoma/genética , Tretinoína/farmacologia
9.
Nat Biotechnol ; 42(4): 591-596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37349523

RESUMO

Current N6-methyladenosine (m6A) mapping methods need large amounts of RNA or are limited to cultured cells. Through optimized sample recovery and signal-to-noise ratio, we developed picogram-scale m6A RNA immunoprecipitation and sequencing (picoMeRIP-seq) for studying m6A in vivo in single cells and scarce cell types using standard laboratory equipment. We benchmark m6A mapping on titrations of poly(A) RNA and embryonic stem cells and in single zebrafish zygotes, mouse oocytes and embryos.


Assuntos
RNA , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , RNA/genética , RNA Mensageiro/genética , Células-Tronco Embrionárias , Células Cultivadas
10.
Sci Adv ; 9(28): eadg4055, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436979

RESUMO

Generation of functionally mature organs requires exquisite control of transcriptional programs governing cell state transitions during development. Despite advances in understanding the behavior of adult intestinal stem cells and their progeny, the transcriptional regulators that control the emergence of the mature intestinal phenotype remain largely unknown. Using mouse fetal and adult small intestinal organoids, we uncover transcriptional differences between the fetal and adult state and identify rare adult-like cells present in fetal organoids. This suggests that fetal organoids have an inherent potential to mature, which is locked by a regulatory program. By implementing a CRISPR-Cas9 screen targeting transcriptional regulators expressed in fetal organoids, we establish Smarca4 and Smarcc1 as important factors safeguarding the immature progenitor state. Our approach demonstrates the utility of organoid models in the identification of factors regulating cell fate and state transitions during tissue maturation and reveals that SMARCA4 and SMARCC1 prevent precocious differentiation during intestinal development.


Assuntos
Células-Tronco Adultas , Sistemas CRISPR-Cas , Animais , Camundongos , Diferenciação Celular/genética , Feto , Organoides
11.
Nat Genet ; 54(6): 754-760, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668298

RESUMO

Posttranslational modifications of histones (PTMs) are associated with specific chromatin and gene expression states1,2. Although studies in Drosophila melanogaster have revealed phenotypic associations between chromatin-modifying enzymes and their histone substrates, comparable studies in mammalian models do not exist3-5. Here, we use CRISPR base editing in mouse embryonic stem cells (mESCs) to address the regulatory role of lysine 27 of histone H3 (H3K27), a substrate for Polycomb repressive complex 2 (PRC2)-mediated methylation and CBP/EP300-mediated acetylation6,7. By generating pan-H3K27R (pK27R) mutant mESCs, where all 28 alleles of H3.1, H3.2 and H3.3 have been mutated, we demonstrate similarity in transcription patterns of genes and differentiation to PRC2-null mutants. Moreover, H3K27 acetylation is not essential for gene derepression linked to loss of H3K27 methylation, or de novo activation of genes during cell-fate transition to epiblast-like cells (EpiLCs). In conclusion, our results show that H3K27 is an essential substrate for PRC2 in mESCs, whereas other PTMs in addition to H3K27 acetylation are likely involved in mediating CBP/EP300 function. Our work demonstrates the feasibility of large-scale multicopy gene editing to interrogate histone PTM function in mammalian cells.


Assuntos
Drosophila melanogaster , Histonas , Acetilação , Animais , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/genética , Histonas/genética , Histonas/metabolismo , Mamíferos/genética , Metilação , Camundongos , Complexo Repressor Polycomb 2/genética , Processamento de Proteína Pós-Traducional/genética
12.
Traffic ; 10(8): 1115-27, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19531065

RESUMO

Endocytic downregulation is a pivotal mechanism turning off signalling from the EGF receptor (EGFR). It is well established that whereas EGF binding leads to lysosomal degradation of EGFR, transforming growth factor (TGF)-alpha causes receptor recycling. TGF-alpha therefore leads to continuous signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-alpha, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking. We have compared the effect of six different ligands on endocytic trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-alpha and epiregulin lead to complete receptor recycling. EGF leads to lysosomal degradation of the majority but not all EGFRs. Amphiregulin does not target EGFR for lysosomal degradation but causes fast as well as slow EGFR recycling. The Cbl ubiquitin ligases, especially c-Cbl, are responsible for EGFR ubiquitination after stimulation with all ligands, and persistent EGFR phosphorylation and ubiquitination largely correlate with receptor degradation.


Assuntos
Endocitose/fisiologia , Receptores ErbB/metabolismo , Ligantes , Transporte Proteico/fisiologia , Anfirregulina , Animais , Betacelulina , Linhagem Celular , Família de Proteínas EGF , Fator de Crescimento Epidérmico/metabolismo , Epirregulina , Receptores ErbB/genética , Glicoproteínas/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Concentração de Íons de Hidrogênio , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador alfa/metabolismo , Ubiquitinação , Proteínas de Transporte Vesicular/metabolismo
13.
Front Genet ; 12: 695124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276797

RESUMO

Folate deficiency is associated with a broad range of human disorders, including anemia, fetal neural tube defects, age-associated dementia and several types of cancer. It is well established that a subgroup of rare fragile sites (RFSs) containing expanded CGG trinucleotide repeat (TNR) sequences display instability when cells are deprived of folate. However, given that folate sensitive RFSs exist in a very small percentage of the population, they are unlikely to be the cause of the widespread health problems associated with folate deficiency. We hypothesized that folate deficiency could specifically affect DNA replication at regions containing CG-rich repeat sequences. For this, we identified a region on human chromosome 2 (Chr2) comprising more than 300 CG-rich TNRs (termed "FOLD1") by examining the human genome database. Via the analysis of chromosome shape and segregation in mitosis, we demonstrate that, when human cells are cultured under folate stress conditions, Chr2 is prone to display a "kink" or "bending" at FOLD1 in metaphase and nondisjunction in anaphase. Furthermore, long-term folate deprivation causes Chr2 aneuploidy. Our results provide new evidence on the abnormalities folate deficiency could cause in human cells. This could facilitate future studies on the deleterious health conditions associated with folate deficiency.

14.
Nat Commun ; 12(1): 4800, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417450

RESUMO

Histone lysine methylations have primarily been linked to selective recruitment of reader or effector proteins that subsequently modify chromatin regions and mediate genome functions. Here, we describe a divergent role for histone H4 lysine 20 mono-methylation (H4K20me1) and demonstrate that it directly facilitates chromatin openness and accessibility by disrupting chromatin folding. Thus, accumulation of H4K20me1 demarcates highly accessible chromatin at genes, and this is maintained throughout the cell cycle. In vitro, H4K20me1-containing nucleosomal arrays with nucleosome repeat lengths (NRL) of 187 and 197 are less compact than unmethylated (H4K20me0) or trimethylated (H4K20me3) arrays. Concordantly, and in contrast to trimethylated and unmethylated tails, solid-state NMR data shows that H4K20 mono-methylation changes the H4 conformational state and leads to more dynamic histone H4-tails. Notably, the increased chromatin accessibility mediated by H4K20me1 facilitates gene expression, particularly of housekeeping genes. Altogether, we show how the methylation state of a single histone H4 residue operates as a focal point in chromatin structure control. While H4K20me1 directly promotes chromatin openness at highly transcribed genes, it also serves as a stepping-stone for H4K20me3-dependent chromatin compaction.


Assuntos
Cromatina/metabolismo , Genes Essenciais , Histonas/metabolismo , Lisina/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Ciclo Celular/genética , Linhagem Celular , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Espectroscopia de Ressonância Magnética , Metilação , Camundongos , Modelos Biológicos , Nucleossomos/metabolismo , Conformação Proteica
15.
Mol Biol Cell ; 18(9): 3656-66, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17626164

RESUMO

High ErbB2 levels are associated with cancer, and impaired endocytosis of ErbB2 could contribute to its overexpression. Therefore, knowledge about the mechanisms underlying endocytic down-regulation of ErbB2 is warranted. The C-terminus of ErbB2 can be cleaved after various stimuli, and after inhibition of HSP90 with geldanamycin this cleavage is accompanied by proteasome-dependent endocytosis of ErbB2. However, it is unknown whether C-terminal cleavage is linked to endocytosis. To study ErbB2 cleavage and endocytic trafficking, we fused yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) to the N- and C-terminus of ErbB2, respectively (YFP-ErbB2-CFP). After geldanamycin stimulation YFP-ErbB2-CFP became cleaved in nonapoptotic cells in a proteasome-dependent manner, and a markedly larger relative amount of cleaved YFP-ErbB2-CFP was observed in early endosomes than in the plasma membrane. Furthermore, cleavage took place at the plasma membrane, and cleaved ErbB2 was internalized and degraded far more efficiently than full-length ErbB2. Concordantly, a C-terminally truncated ErbB2 was also readily endocytosed and degraded in lysosomes compared with full-length ErbB2. Altogether, we suggest that geldanamycin leads to C-terminal cleavage of ErbB2, which releases the receptor from a retention mechanism and causes endocytosis and lysosomal degradation of ErbB2.


Assuntos
Regulação para Baixo/genética , Endocitose , Receptor ErbB-2/química , Receptor ErbB-2/genética , Benzoquinonas/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Humanos , Lactamas Macrocíclicas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Proteínas Mutantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
16.
Methods Mol Biol ; 2117: 35-63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31960371

RESUMO

ChIP-seq is a central method to gain understanding of the regulatory networks in the genome of stem cells and during differentiation. Exploration and analysis of such genome-wide data often leads to unexpected discoveries and new hypotheses. It therefore accelerates and improves the discovery phase, when scientists with biological understanding are enabled to analyze and visualize data. EaSeq ( http://easeq.net ) offers integrated exploration of genome-wide data in a visual, versatile, user-friendly, and interactive manner that connects abstract interpretations to the signal distribution at the underlying loci. Here we introduce the interface, data types, and acquisition, and guide the reader through two example workflows. These workflows will enable the reader to perform genome-wide analysis and visualization of transcription factor binding sites and histone marks. This includes making basic plots; finding, annotating, sorting, and filtering of peaks; using EaSeq as a genome browser; measuring ChIP-seq signal and calculating ratios; as well as data import and export.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Biologia Computacional/métodos , DNA/química , DNA/metabolismo , Animais , Sítios de Ligação , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Camundongos , Análise de Sequência de DNA , Software , Fatores de Transcrição/metabolismo , Interface Usuário-Computador , Fluxo de Trabalho
17.
Wiley Interdiscip Rev Syst Biol Med ; 12(1): e1465, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31478357

RESUMO

Chromatin immunoprecipitation (ChIP) enables mapping of specific histone modifications or chromatin-associated factors in the genome and represents a powerful tool in the study of chromatin and genome regulation. Importantly, recent technological advances that couple ChIP with whole-genome high-throughput sequencing (ChIP-seq) now allow the mapping of chromatin factors throughout the genome. However, the requirement for large amounts of ChIP-seq input material has long made it challenging to assess chromatin profiles of cell types only available in limited numbers. For many cell types, it is not feasible to reach high numbers when collecting them as homogeneous cell populations in vivo. Nonetheless, it is an advantage to work with pure cell populations to reach robust biological conclusions. Here, we review (a) how ChIP protocols have been scaled down for use with as little as a few hundred cells; (b) which considerations to be aware of when preparing small-scale ChIP-seq and analyzing data; and (c) the potential of small-scale ChIP-seq datasets for elucidating chromatin dynamics in various biological systems, including some examples such as oocyte maturation and preimplantation embryo development. This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Developmental Biology > Developmental Processes in Health and Disease Biological Mechanisms > Cell Fates.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Animais , Linhagem Celular Tumoral , Células Cultivadas , Genoma/genética , Genômica , Histonas/genética , Histonas/metabolismo , Camundongos , Técnicas Analíticas Microfluídicas , Oócitos/metabolismo
18.
Nat Cell Biol ; 22(4): 380-388, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231309

RESUMO

The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , Processamento de Proteína Pós-Traducional , Zigoto/metabolismo , Animais , Implantação do Embrião , Embrião de Mamíferos , Feminino , Fertilização/genética , Heterocromatina/química , Heterocromatina/metabolismo , Histona Desmetilases/genética , Histonas/genética , Masculino , Metáfase , Metilação , Camundongos , Camundongos Knockout , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Transcrição Gênica , Zigoto/citologia , Zigoto/crescimento & desenvolvimento
19.
Cancer Res ; 80(17): 3466-3479, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32641411

RESUMO

The mutant protein FOXL2C134W is expressed in at least 95% of adult-type ovarian granulosa cell tumors (AGCT) and is considered to be a driver of oncogenesis in this disease. However, the molecular mechanism by which FOXL2C134W contributes to tumorigenesis is not known. Here, we show that mutant FOXL2C134W acquires the ability to bind SMAD4, forming a FOXL2C134W/SMAD4/SMAD2/3 complex that binds a novel hybrid DNA motif AGHCAHAA, unique to the FOXL2C134W mutant. This binding induced an enhancer-like chromatin state, leading to transcription of nearby genes, many of which are characteristic of epithelial-to-mesenchymal transition. FOXL2C134W also bound hybrid loci in primary AGCT. Ablation of SMAD4 or SMAD2/3 resulted in strong reduction of FOXL2C134W binding at hybrid sites and decreased expression of associated genes. Accordingly, inhibition of TGFß mitigated the transcriptional effect of FOXL2C134W. Our results provide mechanistic insight into AGCT pathogenesis, identifying FOXL2C134W and its interaction with SMAD4 as potential therapeutic targets to this condition. SIGNIFICANCE: FOXL2C134W hijacks SMAD4 and leads to the expression of genes involved in EMT, stemness, and oncogenesis in AGCT, making FOXL2C134W and the TGFß pathway therapeutic targets in this condition. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3466/F1.large.jpg.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteína Forkhead Box L2/genética , Regulação Neoplásica da Expressão Gênica/genética , Tumor de Células da Granulosa/patologia , Proteínas Smad/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Proteína Forkhead Box L2/metabolismo , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/metabolismo , Humanos , Mutação , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad4/metabolismo
20.
Elife ; 82019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30672466

RESUMO

The PLZF transcription factor is essential for osteogenic differentiation of hMSCs; however, its regulation and molecular function during this process is not fully understood. Here, we revealed that the ZBTB16 locus encoding PLZF, is repressed by Polycomb (PcG) and H3K27me3 in naive hMSCs. At the pre-osteoblast stage of differentiation, the locus lost PcG binding and H3K27me3, gained JMJD3 recruitment, and H3K27ac resulting in high expression of PLZF. Subsequently, PLZF was recruited to osteogenic enhancers, influencing H3K27 acetylation and expression of nearby genes important for osteogenic function. Furthermore, we identified a latent enhancer within the ZBTB16/PLZF locus itself that became active, gained PLZF, p300 and Mediator binding and looped to the promoter of the nicotinamide N-methyltransferase (NNMT) gene. The increased expression of NNMT correlated with a decline in SAM levels, which is dependent on PLZF and is required for osteogenic differentiation.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Acetilação , Linhagem da Célula/genética , Cromatina/metabolismo , Epigênese Genética , Loci Gênicos , Histonas/metabolismo , Humanos , Lisina/metabolismo , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Regiões Promotoras Genéticas , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Ligação Proteica , RNA/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA