Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glob Chang Biol ; 29(13): 3707-3722, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37060269

RESUMO

Warm drylands represent 19% of land surfaces worldwide and host ca. 1100 tree species. The risk of decline due to climate aridification of this neglected biodiversity has been overlooked despite its ecological and societal importance. To fill this gap, we assessed the risk of decline due to climate aridification of tree species in warm drylands based on spatialized occurrence data and climate models. We considered both species vulnerability and exposure, compared the risk of tree species decline across five bioregions and searched for phylogenetic correlates. Depending on the future climate model, from 44% to 88% of warm drylands' tree species will undergo climate aridification with a high risk of decline even under the most optimistic conditions. On a regional scale, the rate of species that will undergo climate aridification in the future varies from 21% in the Old World North, to 90% in Australia, with a risk of decline confirming the high level of risk predicted at the global scale. Using generalized linear mixed models, we found that, species more exposed to climate aridification will be more at risk, but also that species vulnerability is a key driver of their risk of decline. Indeed, the warm drylands specialist species will be less at risk due to climate aridification than species being marginal in warm drylands. We also found that the risk of decline is widespread across the main clades of the phylogeny and involves several evolutionary distinct species. Estimating a high risk of decline for numerous tree species in all warm drylands, including emblematic dryland endemics, our work warns that future increase in aridity could result in an extensive erosion of tree biodiversity in these ecosystems.


Assuntos
Mudança Climática , Ecossistema , Filogenia , Biodiversidade , Clima
2.
J Environ Manage ; 201: 425-434, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28704732

RESUMO

Coastal urban expansion will continue to drive further biodiversity losses, if conservation targets for coastal ecosystems are not defined and met. Prioritizing areas for future protected area networks is thus an urgent task in such urbanization-threatened ecosystems. Our aim is to quantify past and future losses of coastal vegetation priority areas due to urbanization and assess the effectiveness of the existing protected area network for conservation. We conduct a prioritization analysis, based on 82 coastal plants, including common and IUCN red list species, in a highly-urbanized but biotically diverse region, in South-Eastern France. We evaluate the role of protected areas, by taking into account both strict and multi-use areas. We assess the impact of past and future urbanization on high priority areas, by combining prioritization analyses and urbanization models. We show that half of the highly diverse areas have already been lost due to urbanization. Remaining top priority areas are also among the most exposed to future urban expansion. The effectiveness of the existing protected area (PA) network is only partial. While strict PAs coincide well with top priority areas, they only represent less than one third of priority areas. The effectiveness of multi-use PAs, such as the Natura 2000 network, also remains limited. Our approach highlights the impact of urbanization on plant conservation targets. By modelling urbanization, we manage to identify those areas where protection could be more efficient to limit further losses. We suggest to use our approach in the future to expand the PA network in order to achieve the 2020 Aichi biodiversity targets.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , França , Urbanização
3.
Ann Bot ; 114(3): 455-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25081517

RESUMO

BACKGROUND AND AIMS: The hypothesis of an ancient introduction, i.e. archaeophyte origin, is one of the most challenging questions in phylogeography. Arundo donax (Poaceae) is currently considered to be one of the worst invasive species globally, but it has also been widely utilzed by man across Eurasia for millennia. Despite a lack of phylogenetic data, recent literature has often speculated on its introduction to the Mediterranean region. METHODS: This study tests the hypothesis of its ancient introduction from Asia to the Mediterranean by using plastid DNA sequencing and morphometric analysis on 127 herbarium specimens collected across sub-tropical Eurasia. In addition, a bioclimatic species distribution model calibrated on 1221 Mediterranean localities was used to identify similar ecological niches in Asia. KEY RESULTS: Despite analysis of several plastid DNA hypervariable sites and the identification of 13 haplotypes, A. donax was represented by a single haplotype from the Mediterranean to the Middle East. This haplotype is shared with invasive samples worldwide, and its nearest phylogenetic relatives are located in the Middle East. Morphometric data characterized this invasive clone by a robust morphotype distinguishable from all other Asian samples. The ecological niche modelling designated the southern Caspian Sea, southern Iran and the Indus Valley as the most suitable regions of origin in Asia for the invasive clone of A. donax. CONCLUSIONS: Using an integrative approach, an ancient dispersion of this robust, polyploid and non-fruiting clone is hypothesized from the Middle East to the west, leading to its invasion throughout the Mediterranean Basin.


Assuntos
DNA de Plantas/genética , Efeito Fundador , Haplótipos , Espécies Introduzidas , Dispersão Vegetal , Poaceae/fisiologia , Ásia , Evolução Biológica , Ecossistema , Marcadores Genéticos , Região do Mediterrâneo , Dados de Sequência Molecular , Filogenia , Poaceae/anatomia & histologia , Poaceae/genética , Polimorfismo Genético , Reprodução , Análise de Sequência de DNA
4.
Sci Data ; 8(1): 89, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758194

RESUMO

Trees play a key role in the structure and function of many ecosystems worldwide. In the Mediterranean Basin, forests cover approximately 22% of the total land area hosting a large number of endemics (46 species). Despite its particularities and vulnerability, the biodiversity of Mediterranean trees is not well known at the taxonomic, spatial, functional, and genetic levels required for conservation applications. The WOODIV database fills this gap by providing reliable occurrences, four functional traits (plant height, seed mass, wood density, and specific leaf area), and sequences from three DNA-regions (rbcL, matK, and trnH-psbA), together with modelled occurrences and a phylogeny for all 210 Euro-Mediterranean tree species. We compiled, homogenized, and verified occurrence data from sparse datasets and collated them on an INSPIRE-compliant 10 × 10 km grid. We also gathered functional trait and genetic data, filling existing gaps where possible. The WOODIV database can benefit macroecological studies in the fields of conservation, biogeography, and community ecology.


Assuntos
Bases de Dados Factuais , Florestas , Árvores , Ecossistema , Região do Mediterrâneo , Filogenia
5.
C R Biol ; 329(9): 733-41, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16945840

RESUMO

Despite the fact that coverage is one of the most widely used descriptors for seagrass meadows, the spatial structure of coverage at mesoscale has not often been taken into account. The present work investigates the structure of P. oceanica coverage at mesoscale and its possible relationship with several factors (depth, type of substrate, relative level within the meadow, type of shoot density and level of anthropic pressure). Five classes of coverage structure are delineated within P. oceanica meadows and statistical analysis of the data did not provide evidence of a link with the factors taken into consideration. This result could be explained by the prevailing role of endogenic processes in the structuring of the P. oceanica meadow.


Assuntos
Alismatales/crescimento & desenvolvimento , Ecossistema , Análise Discriminante , Mar Mediterrâneo , Folhas de Planta/crescimento & desenvolvimento
6.
PLoS One ; 11(1): e0146899, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26751565

RESUMO

Species occurrence data provide crucial information for biodiversity studies in the current context of global environmental changes. Such studies often rely on a limited number of occurrence data collected in the field and on pseudo-absences arbitrarily chosen within the study area, which reduces the value of these studies. To overcome this issue, we propose an alternative method of prospection using geo-located street view imagery (SVI). Following a standardised protocol of virtual prospection using both vertical (aerial photographs) and horizontal (SVI) perceptions, we have surveyed 1097 randomly selected cells across Spain (0.1x0.1 degree, i.e. 20% of Spain) for the presence of Arundo donax L. (Poaceae). In total we have detected A. donax in 345 cells, thus substantially expanding beyond the now two-centuries-old field-derived record, which described A. donax only 216 cells. Among the field occurrence cells, 81.1% were confirmed by SVI prospection to be consistent with species presence. In addition, we recorded, by SVI prospection, 752 absences, i.e. cells where A. donax was considered absent. We have also compared the outcomes of climatic niche modeling based on SVI data against those based on field data. Using generalized linear models fitted with bioclimatic predictors, we have found SVI data to provide far more compelling results in terms of niche modeling than does field data as classically used in SDM. This original, cost- and time-effective method provides the means to accurately locate highly visible taxa, reinforce absence data, and predict species distribution without long and expensive in situ prospection. At this time, the majority of available SVI data is restricted to human-disturbed environments that have road networks. However, SVI is becoming increasingly available in natural areas, which means the technique has considerable potential to become an important factor in future biodiversity studies.


Assuntos
Biodiversidade , Análise Custo-Benefício , Monitoramento Ambiental/economia , Sistemas de Informação Geográfica/economia , Poaceae , Clima , Coleta de Dados , Ecologia , Geografia , Modelos Lineares , Análise de Componente Principal , Probabilidade , Espanha
8.
C R Biol ; 328(3): 291-6, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15810553

RESUMO

The response of Posidonia oceanica (Linnaeus) Delile to the warm-water episode of summer 1999 was studied by means of the technique of lepidochronology. Study sites include three sites affected by the mass mortality event of benthic invertebrates and one not affected. The results showed a significant decline in some parameters (number of leaves and/or rhizome growth) for the three sites affected by the mass mortality event for the year following the warm-water episode (1999-2000). A similar decline was not observed for the unaffected site. The fact that high temperatures could have a negative impact on deep Posidonia oceanica near its cold limit of distribution is an unexpected result.


Assuntos
Alismatales/crescimento & desenvolvimento , Água do Mar , Temperatura Alta , Mar Mediterrâneo
9.
PLoS One ; 8(5): e64479, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23704988

RESUMO

Puccinia psidii sensu lato (s.l.) is an invasive rust fungus threatening a wide range of plant species in the family Myrtaceae. Originating from Central and South America, it has invaded mainland USA and Hawai'i, parts of Asia and Australia. We used CLIMEX to develop a semi-mechanistic global climatic niche model based on new data on the distribution and biology of P. psidii s.l. The model was validated using independent distribution data from recently invaded areas in Australia, China and Japan. We combined this model with distribution data of its potential Myrtaceae host plant species present in Australia to identify areas and ecosystems most at risk. Myrtaceaeous species richness, threatened Myrtaceae and eucalypt plantations within the climatically suitable envelope for P. psidii s.l in Australia were mapped. Globally the model identifies climatically suitable areas for P. psidii s.l. throughout the wet tropics and sub-tropics where moist conditions with moderate temperatures prevail, and also into some cool regions with a mild Mediterranean climate. In Australia, the map of species richness of Myrtaceae within the P. psidii s.l. climatic envelope shows areas where epidemics are hypothetically more likely to be frequent and severe. These hotspots for epidemics are along the eastern coast of New South Wales, including the Sydney Basin, in the Brisbane and Cairns areas in Queensland, and in the coastal region from the south of Bunbury to Esperance in Western Australia. This new climatic niche model for P. psidii s.l. indicates a higher degree of cold tolerance; and hence a potential range that extends into higher altitudes and latitudes than has been indicated previously. The methods demonstrated here provide some insight into the impacts an invasive species might have within its climatically suited range, and can help inform biosecurity policies regarding the management of its spread and protection of valued threatened assets.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Clima , Ecossistema , Especificidade de Hospedeiro , Espécies Introduzidas , Modelos Biológicos , Myrtaceae/microbiologia , Ágar/farmacologia , Austrália , Basidiomycota/efeitos dos fármacos , Geografia , Reprodutibilidade dos Testes , Temperatura , Madeira/microbiologia
10.
PLoS One ; 8(2): e54861, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405097

RESUMO

Biosecurity agencies need robust bioeconomic tools to help inform policy and allocate scarce management resources. They need to estimate the potential for each invasive alien species (IAS) to create negative impacts, so that relative and absolute comparisons can be made. Using pine processionary moth (Thaumetopoea pityocampa sensu lato) as an example, these needs were met by combining species niche modelling, dispersal modelling, host impact and economic modelling. Within its native range (the Mediterranean Basin and adjacent areas), T. pityocampa causes significant defoliation of pines and serious urticating injuries to humans. Such severe impacts overseas have fuelled concerns about its potential impacts, should it be introduced to New Zealand. A stochastic bioeconomic model was used to estimate the impact of PPM invasion in terms of pine production value lost due to a hypothetical invasion of New Zealand by T. pityocampa. The bioeconomic model combines a semi-mechanistic niche model to develop a climate-related damage function, a climate-related forest growth model, and a stochastic spread model to estimate the present value (PV) of an invasion. Simulated invasions indicate that Thaumetopoea pityocampa could reduce New Zealand's merchantable and total pine stem volume production by 30%, reducing forest production by between NZ$1,550 M to NZ$2,560 M if left untreated. Where T. pityocampa is controlled using aerial application of an insecticide, projected losses in PV were reduced, but still significant (NZ$30 M to NZ$2,210 M). The PV estimates were more sensitive to the efficacy of the spray program than the potential rate of spread of the moth. Our novel bioeconomic method provides a refined means of estimating potential impacts of invasive alien species, taking into account climatic effects on asset values, the potential for pest impacts, and pest spread rates.


Assuntos
Clima , Ecossistema , Espécies Introduzidas , Animais , Humanos , Mariposas , Nova Zelândia , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA