Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 185(14): 2523-2541.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738284

RESUMO

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.


Assuntos
Vírus Hendra , Vírus Nipah , Células-Tronco Pluripotentes , Artérias , Células Endoteliais , Vírus Hendra/genética , Humanos , Tropismo
2.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496600

RESUMO

Autologous transplantation of CCR5 null hematopoietic stem and progenitor cells (HSPCs) is the only known cure for HIV-1 infection. However, this treatment is limited because of the rarity of CCR5 -null matched donors, the morbidities associated with allogeneic transplantation, and the prevalence of HIV-1 strains resistant to CCR5 knockout (KO) alone. Here, we propose a one-time therapy through autologous transplantation of HSPCs genetically engineered ex vivo to produce both CCR5 KO cells and long-term secretion of potent HIV-1 inhibiting antibodies from B cell progeny. CRISPR-Cas9-engineered HSPCs maintain engraftment capacity and multi-lineage potential in vivo and can be engineered to express multiple antibodies simultaneously. Human B cells engineered to express each antibody secrete neutralizing concentrations capable of inhibiting HIV-1 pseudovirus infection in vitro . This work lays the groundwork for a potential one-time functional cure for HIV-1 through combining the long-term delivery of therapeutic antibodies against HIV-1 and the known efficacy of CCR5 KO HSPC transplantation.

3.
Nat Med ; 27(4): 677-687, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33737751

RESUMO

ß-Thalassemia pathology is due not only to loss of ß-globin (HBB), but also to erythrotoxic accumulation and aggregation of the ß-globin-binding partner, α-globin (HBA1/2). Here we describe a Cas9/AAV6-mediated genome editing strategy that can replace the entire HBA1 gene with a full-length HBB transgene in ß-thalassemia-derived hematopoietic stem and progenitor cells (HSPCs), which is sufficient to normalize ß-globin:α-globin messenger RNA and protein ratios and restore functional adult hemoglobin tetramers in patient-derived red blood cells. Edited HSPCs were capable of long-term and bilineage hematopoietic reconstitution in mice, establishing proof of concept for replacement of HBA1 with HBB as a novel therapeutic strategy for curing ß-thalassemia.


Assuntos
Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinas/metabolismo , alfa-Globinas/genética , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/terapia , Anemia Falciforme/patologia , Animais , Antígenos CD34/metabolismo , Dependovirus/genética , Eritrócitos/metabolismo , Edição de Genes , Genes Reporter , Loci Gênicos , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , RNA Guia de Cinetoplastídeos/genética
4.
Nat Commun ; 11(1): 2713, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483127

RESUMO

Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs >106-fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Edição de Genes/métodos , Células-Tronco Pluripotentes/metabolismo , Transplante de Células-Tronco/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Teratoma/genética , Teratoma/metabolismo , Teratoma/prevenção & controle
5.
Cell Stem Cell ; 24(5): 821-828.e5, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051134

RESUMO

Genome editing of human pluripotent stem cells (hPSCs) provides powerful opportunities for in vitro disease modeling, drug discovery, and personalized stem cell-based therapeutics. Currently, only small edits can be engineered with high frequency, while larger modifications suffer from low efficiency and a resultant need for selection markers. Here, we describe marker-free genome editing in hPSCs using Cas9 ribonucleoproteins (RNPs) in combination with AAV6-mediated DNA repair template delivery. We report highly efficient and bi-allelic integration frequencies across multiple loci and hPSC lines, achieving mono-allelic editing frequencies of up to 94% at the HBB locus. Using this method, we show robust bi-allelic correction of homozygous sickle cell mutations in a patient-derived induced PSC (iPSC) line. Thus, this strategy shows significant utility for generating hPSCs with large gene integrations and/or single-nucleotide changes at high frequency and without the need for introducing selection genes, enhancing the applicability of hPSC editing for research and translational uses.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Genótipo , Células-Tronco Pluripotentes/fisiologia , Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA , Edição de Genes/métodos , Frequência do Gene , Engenharia Genética , Vetores Genéticos/genética , Recombinação Homóloga , Humanos , Patologia Molecular , Doadores de Tecidos
6.
Nat Med ; 25(2): 249-254, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692695

RESUMO

The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials.


Assuntos
Imunidade Adaptativa , Proteína 9 Associada à CRISPR/metabolismo , Adulto , Separação Celular , Feminino , Humanos , Imunidade Humoral , Masculino , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA