Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(3): 419-426, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868206

RESUMO

Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.


Assuntos
Genômica , Política de Saúde , Humanos , Austrália , Doenças Raras , Atenção à Saúde
2.
Brain ; 147(4): 1264-1277, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37939785

RESUMO

Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Síndromes Epilépticas , Malformações do Desenvolvimento Cortical , Humanos , Fluordesoxiglucose F18 , Malformações do Desenvolvimento Cortical/genética , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/genética , Epilepsias Parciais/patologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Imageamento por Ressonância Magnética/métodos , Convulsões/complicações , Serina-Treonina Quinases TOR , Proteínas Ativadoras de GTPase/genética
3.
Hum Mol Genet ; 31(14): 2307-2316, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137044

RESUMO

Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.


Assuntos
Ciliopatias , Hamartoma , Doenças Hipotalâmicas , Ciliopatias/genética , Hamartoma/genética , Proteínas Hedgehog/metabolismo , Humanos , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/genética , Imageamento por Ressonância Magnética
4.
Epilepsia ; 65(6): 1644-1657, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488289

RESUMO

OBJECTIVE: Patients with focal, lesional epilepsy present with seizures at variable ages. Larger lesion size and overlap with sensorimotor or default mode network (DMN) have been associated with younger age at seizure onset in cohorts with mixed types of focal cortical dysplasia (FCD). Here, we studied determinants of age at seizure onset in patients with bottom-of-sulcus dysplasia (BOSD), a discrete type of FCD with highly localized epileptogenicity. METHODS: Eighty-four patients (77% operated) with BOSD were studied. Demographic, histopathologic, and genetic findings were recorded. BOSD volume and anatomical, primary versus association, rostral versus caudal, and functional network locations were determined. Normative functional connectivity analyses were performed using each BOSD as a region of interest in resting-state functional magnetic resonance imaging data of healthy children. Variables were correlated with age at seizure onset. RESULTS: Median age at seizure onset was 5.4 (interquartile range = 2-7.9) years. Of 50 tested patients, 22 had somatic and nine had germline pathogenic mammalian target of rapamycin (mTOR) pathway variants. Younger age at seizure onset was associated with greater BOSD volume (p = .002), presence of a germline pathogenic variant (p = .04), DMN overlap (p = .04), and increased functional connectivity with the DMN (p < .05, false discovery rate corrected). Location within sensorimotor cortex and networks was not associated with younger age at seizure onset in our relatively small but homogenous cohort. SIGNIFICANCE: Greater lesion size, pathogenic mTOR pathway germline variants, and DMN connectivity are associated with younger age at seizure onset in small FCD. Our findings strengthen the suggested role of DMN connectivity in the onset of FCD-related focal epilepsy and reveal novel contributions of genetic etiology.


Assuntos
Idade de Início , Epilepsias Parciais , Imageamento por Ressonância Magnética , Convulsões , Humanos , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/diagnóstico por imagem , Masculino , Feminino , Criança , Pré-Escolar , Convulsões/genética , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/fisiopatologia , Serina-Treonina Quinases TOR/genética , Adolescente , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia
5.
J Int Neuropsychol Soc ; 30(1): 18-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37057871

RESUMO

OBJECTIVES: The developmental absence (agenesis) of the corpus callosum (AgCC) is a congenital brain malformation associated with risk for a range of neuropsychological difficulties. Inhibitory control outcomes, including interference control and response inhibition, in children with AgCC are unclear. This study examined interference control and response inhibition: 1) in children with AgCC compared with typically developing (TD) children, 2) in children with different anatomical features of AgCC (complete vs. partial, isolated vs. complex), and 3) associations with white matter volume and microstructure of the anterior (AC) and posterior commissures (PC) and any remnant corpus callosum (CC). METHODS: Participants were 27 children with AgCC and 32 TD children 8-16 years who completed inhibitory control assessments and brain MRI to define AgCC anatomical features and measure white matter volume and microstructure. RESULTS: The AgCC cohort had poorer performance and higher rates of below average performance on inhibitory control measures than TD children. Children with complex AgCC had poorer response inhibition performance than children with isolated AgCC. While not statistically significant, there were select medium to large effect sizes for better inhibitory control associated with greater volume and microstructure of the AC and PC, and with reduced volume and microstructure of the remnant CC in partial AgCC. CONCLUSIONS: This study provides evidence of inhibitory control difficulties in children with AgCC. While the sample was small, the study found preliminary evidence that the AC (f2=.18) and PC (f2=.30) may play a compensatory role for inhibitory control outcomes in the absence of the CC.


Assuntos
Corpo Caloso , Substância Branca , Criança , Humanos , Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/complicações , Agenesia do Corpo Caloso/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Substância Branca/diagnóstico por imagem
6.
Ann Neurol ; 92(1): 122-137, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411967

RESUMO

OBJECTIVE: Dominant spinocerebellar ataxias (SCA) are characterized by genetic heterogeneity. Some mapped and named loci remain without a causal gene identified. Here we applied next generation sequencing (NGS) to uncover the genetic etiology of the SCA25 locus. METHODS: Whole-exome and whole-genome sequencing were performed in families linked to SCA25, including the French family in which the SCA25 locus was originally mapped. Whole exome sequence data were interrogated in a cohort of 796 ataxia patients of unknown etiology. RESULTS: The SCA25 phenotype spans a slowly evolving sensory and cerebellar ataxia, in most cases attributed to ganglionopathy. A pathogenic variant causing exon skipping was identified in the gene encoding Polyribonucleotide Nucleotidyltransferase PNPase 1 (PNPT1) located in the SCA25 linkage interval. A second splice variant in PNPT1 was detected in a large Australian family with a dominant ataxia also mapping to SCA25. An additional nonsense variant was detected in an unrelated individual with ataxia. Both nonsense and splice heterozygous variants result in premature stop codons, all located in the S1-domain of PNPase. In addition, an elevated type I interferon response was observed in blood from all affected heterozygous carriers tested. PNPase notably prevents the abnormal accumulation of double-stranded mtRNAs in the mitochondria and leakage into the cytoplasm, associated with triggering a type I interferon response. INTERPRETATION: This study identifies PNPT1 as a new SCA gene, responsible for SCA25, and highlights biological links between alterations of mtRNA trafficking, interferonopathies and ataxia. ANN NEUROL 2022;92:122-137.


Assuntos
Ataxia Cerebelar , Interferon Tipo I , Ataxias Espinocerebelares , Ataxia , Austrália , Exorribonucleases , França , Humanos , Interferon Tipo I/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
7.
Epilepsia ; 64(2): 348-363, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36527426

RESUMO

OBJECTIVE: Favorable seizure outcome is reported following resection of bottom-of-sulcus dysplasia (BOSD). We assessed the distribution of epileptogenicity and dysplasia in and around BOSD to better understand this clinical outcome and the optimal surgical approach. METHODS: We studied 27 children and adolescents with magnetic resonance imaging (MRI)-positive BOSD who underwent epilepsy surgery; 85% became seizure-free postresection (median = 5.0 years follow-up). All patients had resection of the dysplastic sulcus, and 11 had additional resection of the gyral crown (GC) or adjacent gyri (AG). Markers of epileptogenicity were relative cortical hypometabolism on preoperative 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET), and spiking, ripples, fast ripples, spike-high-frequency oscillation cross-rate, and phase amplitude coupling (PAC) on preresection and postresection electrocorticography (ECoG), all analyzed at the bottom-of-sulcus (BOS), top-of-sulcus (TOS), GC, and AG. Markers of dysplasia were increased cortical thickness on preoperative MRI, and dysmorphic neuron density and variant allele frequency of somatic MTOR mutations in resected tissue, analyzed at similar locations. RESULTS: Relative cortical metabolism was significantly reduced and ECoG markers were significantly increased at the BOS compared to other regions. Apart from spiking and PAC, which were greater at the TOS compared to the GC, there were no significant differences in PET and other ECoG markers between the TOS, GC, and AG, suggesting a cutoff of epileptogenicity at the TOS rather than a tapering gradient on the cortical surface. MRI and tissue markers of dysplasia were all maximal in the BOS, reduced in the TOS, and mostly absent in the GC. Spiking and PAC reduced significantly over the GC after resection of the dysplastic sulcus. SIGNIFICANCE: These findings support the concept that dysplasia and intrinsic epileptogenicity are mostly limited to the dysplastic sulcus in BOSD and support resection or ablation confined to the MRI-visible lesion as a first-line surgical approach. 18 F-FDG PET and ECoG abnormalities in surrounding cortex seem to be secondary phenomena.


Assuntos
Epilepsia , Displasia Cortical Focal , Criança , Adolescente , Humanos , Eletroencefalografia , Fluordesoxiglucose F18 , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Epilepsia/cirurgia , Imageamento por Ressonância Magnética/métodos
8.
Epilepsia ; 64(5): 1351-1367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779245

RESUMO

OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.


Assuntos
Encefalopatias , Síndromes Epilépticas , Espasmos Infantis , Humanos , Encefalopatias/genética , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/genética , Espasmos Infantis/complicações , Convulsões/diagnóstico por imagem , Convulsões/genética , Convulsões/complicações , Encéfalo/patologia , Síndromes Epilépticas/complicações , Eletroencefalografia , Espasmo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Brain ; 145(9): 3274-3287, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35769015

RESUMO

Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.


Assuntos
Lisencefalia , Proteína Reelina , Adulto , Cerebelo/anormalidades , Criança , Deficiências do Desenvolvimento/genética , Humanos , Lisencefalia/complicações , Mutação , Malformações do Sistema Nervoso , Proteína Reelina/genética
10.
Am J Hum Genet ; 104(5): 914-924, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982611

RESUMO

Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.


Assuntos
Surdez/congênito , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Variação Genética , Glipicanas/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Deformidades Congênitas das Extremidades Inferiores/patologia , Adulto , Criança , Pré-Escolar , Surdez/genética , Surdez/patologia , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Adulto Jovem
11.
Genet Med ; 24(1): 130-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906502

RESUMO

PURPOSE: Genetic variants causing aberrant premessenger RNA splicing are increasingly being recognized as causal variants in genetic disorders. In this study, we devise standardized practices for polymerase chain reaction (PCR)-based RNA diagnostics using clinically accessible specimens (blood, fibroblasts, urothelia, biopsy). METHODS: A total of 74 families with diverse monogenic conditions (31% prenatal-congenital onset, 47% early childhood, and 22% teenage-adult onset) were triaged into PCR-based RNA testing, with comparative RNA sequencing for 19 cases. RESULTS: Informative RNA assay data were obtained for 96% of cases, enabling variant reclassification for 75% variants that can be used for genetic counseling (71%), to inform clinical care (32%) and prenatal counseling (41%). Variant-associated mis-splicing was highly reproducible for 28 cases with samples from ≥2 affected individuals or heterozygotes and 10 cases with ≥2 biospecimens. PCR amplicons encompassing another segregated heterozygous variant was vital for clinical interpretation of 22 of 79 variants to phase RNA splicing events and discern complete from partial mis-splicing. CONCLUSION: RNA diagnostics enabled provision of a genetic diagnosis for 64% of recruited cases. PCR-based RNA diagnostics has capacity to analyze 81.3% of clinically significant genes, with long amplicons providing an advantage over RNA sequencing to phase RNA splicing events. The Australasian Consortium for RNA Diagnostics (SpliceACORD) provide clinically-endorsed, standardized protocols and recommendations for interpreting RNA assay data.


Assuntos
Splicing de RNA , RNA , Adolescente , Adulto , Pré-Escolar , Humanos , Mutação , RNA/genética , Splicing de RNA/genética , Análise de Sequência de RNA , Sequenciamento do Exoma
12.
Cereb Cortex ; 31(2): 1227-1239, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108795

RESUMO

The corpus callosum is the largest white matter pathway in the brain connecting the two hemispheres. In the context of developmental absence (agenesis) of the corpus callosum (AgCC), a proposed candidate for neuroplastic response is strengthening of intrahemispheric pathways. To test this hypothesis, we assessed structural and functional connectivity in a uniquely large cohort of children with AgCC (n = 20) compared with typically developing controls (TDC, n = 29), and then examined associations with neurobehavioral outcomes using a multivariate data-driven approach (partial least squares correlation, PLSC). For structural connectivity, children with AgCC showed a significant increase in intrahemispheric connectivity in addition to a significant decrease in interhemispheric connectivity compared with TDC, in line with the aforementioned hypothesis. In contrast, for functional connectivity, children with AgCC and TDC showed a similar pattern of intrahemispheric and interhemispheric connectivity. In conclusion, we observed structural strengthening of intrahemispheric pathways in children born without corpus callosum, which seems to allow for functional connectivity comparable to a typically developing brain, and were relevant to explain neurobehavioral outcomes in this population. This neuroplasticity might be relevant to other disorders of axonal guidance, and developmental disorders in which corpus callosum alteration is observed.


Assuntos
Agenesia do Corpo Caloso/fisiopatologia , Comportamento Infantil/fisiologia , Corpo Caloso/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Adolescente , Agenesia do Corpo Caloso/diagnóstico por imagem , Criança , Comportamento Infantil/psicologia , Estudos de Coortes , Corpo Caloso/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem
13.
J Med Genet ; 58(1): 33-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32571897

RESUMO

BACKGROUND: Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in TUBB2A have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis. METHODS: In order to further refine the phenotypical spectrum associated with TUBB2A, clinical and imaging features of 12 patients with pathogenic TUBB2A variants, recruited via the international network of the authors, were reviewed. RESULTS: We report 12 patients with eight novel and one recurrent variants spread throughout the TUBB2A gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in TUBB2A patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy. CONCLUSION: The imaging phenotype associated with pathogenic variants in TUBB2A is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Polimicrogiria/genética , Tubulina (Proteína)/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Vermis Cerebelar/diagnóstico por imagem , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Feminino , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Masculino , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/patologia , Neuroimagem/métodos , Fenótipo , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/patologia , Tubulina (Proteína)/deficiência , Adulto Jovem
14.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163267

RESUMO

Type II focal cortical dysplasia (FCD) is a neuropathological entity characterised by cortical dyslamination with the presence of dysmorphic neurons only (FCDIIA) or the presence of both dysmorphic neurons and balloon cells (FCDIIB). The year 2021 marks the 50th anniversary of the recognition of FCD as a cause of drug resistant epilepsy, and it is now the most common reason for epilepsy surgery. The causes of FCD remained unknown until relatively recently. The study of resected human FCD tissue using novel genomic technologies has led to remarkable advances in understanding the genetic basis of FCD. Mechanistic parallels have emerged between these non-neoplastic lesions and neoplastic disorders of cell growth and differentiation, especially through perturbations of the mammalian target of rapamycin (mTOR) signalling pathway. This narrative review presents the advances through which the aetiology of FCDII has been elucidated in chronological order, from recognition of an association between FCD and the mTOR pathway to the identification of somatic mosaicism within FCD tissue. We discuss the role of a two-hit mechanism, highlight current challenges and future directions in detecting somatic mosaicism in brain and discuss how knowledge of FCD may inform novel precision treatments of these focal epileptogenic malformations of human cortical development.


Assuntos
Epilepsia Resistente a Medicamentos/etiologia , Epilepsia/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Encéfalo/metabolismo , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia/etiologia , Epilepsia/genética , Epilepsia/fisiopatologia , Humanos , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical do Grupo I/genética , Malformações do Desenvolvimento Cortical do Grupo I/fisiopatologia , Mutação/genética , Neurônios/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
15.
Neuroimage ; 243: 118471, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34455063

RESUMO

In the human brain, the corpus callosum is the major white-matter commissural tract enabling the transmission of sensory-motor, and higher level cognitive information between homotopic regions of the two cerebral hemispheres. Despite developmental absence (i.e., agenesis) of the corpus callosum (AgCC), functional connectivity is preserved, including interhemispheric connectivity. Subcortical structures have been hypothesised to provide alternative pathways to enable this preservation. To test this hypothesis, we used functional Magnetic Resonance Imaging (fMRI) recordings in children with AgCC and typically developing children, and a time-resolved approach to retrieve temporal characteristics of whole-brain functional networks. We observed an increased engagement of the cerebellum and amygdala/hippocampus networks in children with AgCC compared to typically developing children. There was little evidence that laterality of activation networks was affected in AgCC. Our findings support the hypothesis that subcortical structures play an essential role in the functional reconfiguration of the brain in the absence of a corpus callosum.


Assuntos
Agenesia do Corpo Caloso/diagnóstico por imagem , Lateralidade Funcional/fisiologia , Adolescente , Cerebelo/diagnóstico por imagem , Criança , Conectoma , Corpo Caloso/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Plasticidade Neuronal , Substância Branca
16.
Genet Med ; 23(2): 363-373, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33144681

RESUMO

PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Epilepsia , Transtorno do Espectro Autista/genética , Encefalopatias/genética , Epilepsia/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Masculino , Proteínas do Tecido Nervoso , Convulsões/genética
17.
Am J Med Genet A ; 185(10): 2941-2950, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34089223

RESUMO

Pathogenic heterozygous variants in HMBS encoding the enzyme hydroxymethylbilane synthase (HMBS), also known as porphobilinogen deaminase, cause acute intermittent porphyria (AIP). Biallelic variants in HMBS have been reported in a small number of children with severe progressive neurological disease and in three adult siblings with a more slowly, progressive neurological disease and distinct leukoencephalopathy. We report three further adult individuals who share a distinct pattern of white matter abnormality on brain MRI in association with biallelic variants in HMBS, two individuals with homozygous variants, and one with compound-heterozygous variants. We present their clinical and radiological features and compare these with the three adult siblings previously described with leukoencephalopathy and biallelic HMBS variants. All six affected individuals presented with slowly progressive spasticity, ataxia, peripheral neuropathy, with or without mild cognitive impairment, and/or ocular disease with onset in childhood or adolescence. Their brain MRIs show mainly confluent signal abnormalities in the periventricular and deep white matter and bilateral thalami. This recognizable pattern of MRI abnormalities is seen in all six adults described here. Biallelic variants in HMBS cause a phenotype that is distinct from AIP. It is not known whether AIP treatments benefit individuals with HMBS-related leukoencephalopathy. One individual reported here had improved neurological function for 12 months following liver transplantation followed by decline and progression of disease.


Assuntos
Disfunção Cognitiva/genética , Hidroximetilbilano Sintase/genética , Leucoencefalopatias/genética , Porfiria Aguda Intermitente/genética , Adulto , Alelos , Criança , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Feminino , Homozigoto , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Porfiria Aguda Intermitente/diagnóstico por imagem , Porfiria Aguda Intermitente/patologia
18.
Am J Med Genet A ; 185(9): 2690-2718, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33205886

RESUMO

Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.


Assuntos
Encéfalo/anormalidades , Encéfalo/patologia , Doenças em Gêmeos/patologia , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto , Doenças em Gêmeos/genética , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Literatura de Revisão como Assunto
19.
Am J Med Genet A ; 185(1): 15-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33029936

RESUMO

Biallelic mutations in SNORD118, encoding the small nucleolar RNA U8, cause leukoencephalopathy with calcifications and cysts (LCC). Given the difficulty in interpreting the functional consequences of variants in nonprotein encoding genes, and the high allelic polymorphism across SNORD118 in controls, we set out to provide a description of the molecular pathology and clinical spectrum observed in a cohort of patients with LCC. We identified 64 affected individuals from 56 families. Age at presentation varied from 3 weeks to 67 years, with disease onset after age 40 years in eight patients. Ten patients had died. We recorded 44 distinct, likely pathogenic, variants in SNORD118. Fifty two of 56 probands were compound heterozygotes, with parental consanguinity reported in only three families. Forty nine of 56 probands were either heterozygous (46) or homozygous (three) for a mutation involving one of seven nucleotides that facilitate a novel intramolecular interaction between the 5' end and 3' extension of precursor-U8. There was no obvious genotype-phenotype correlation to explain the marked variability in age at onset. Complementing recently published functional analyses in a zebrafish model, these data suggest that LCC most often occurs due to combinatorial severe and milder mutations, with the latter mostly affecting 3' end processing of precursor-U8.


Assuntos
Calcinose/genética , Estudos de Associação Genética , Leucoencefalopatias/genética , RNA Nucleolar Pequeno/genética , Adolescente , Adulto , Idoso , Animais , Calcinose/complicações , Calcinose/patologia , Criança , Pré-Escolar , Consanguinidade , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Leucoencefalopatias/complicações , Leucoencefalopatias/patologia , Masculino , Pessoa de Meia-Idade , Patologia Molecular , Adulto Jovem , Peixe-Zebra/genética
20.
Epilepsia ; 62(2): 358-370, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33475165

RESUMO

OBJECTIVE: To study the epilepsy syndromes among the severe epilepsies of infancy and assess their incidence, etiologies, and outcomes. METHODS: A population-based cohort study was undertaken of severe epilepsies with onset before age 18 months in Victoria, Australia. Two epileptologists reviewed clinical features, seizure videos, and electroencephalograms to diagnose International League Against Epilepsy epilepsy syndromes. Incidence, etiologies, and outcomes at age 2 years were determined. RESULTS: Seventy-three of 114 (64%) infants fulfilled diagnostic criteria for epilepsy syndromes at presentation, and 16 (14%) had "variants" of epilepsy syndromes in which there was one missing or different feature, or where all classical features had not yet emerged. West syndrome (WS) and "WS-like" epilepsy (infantile spasms without hypsarrhythmia or modified hypsarrhythmia) were the most common syndromes, with a combined incidence of 32.7/100 000 live births/year. The incidence of epilepsy of infancy with migrating focal seizures (EIMFS) was 4.5/100 000 and of early infantile epileptic encephalopathy (EIEE) was 3.6/100 000. Structural etiologies were common in "WS-like" epilepsy (100%), unifocal epilepsy (83%), and WS (39%), whereas single gene disorders predominated in EIMFS, EIEE, and Dravet syndrome. Eighteen (16%) infants died before age 2 years. Development was delayed or borderline in 85 of 96 (89%) survivors, being severe-profound in 40 of 96 (42%). All infants with EIEE or EIMFS had severe-profound delay or were deceased, but only 19 of 64 (30%) infants with WS, "WS-like," or "unifocal epilepsy" had severe-profound delay, and only two of 64 (3%) were deceased. SIGNIFICANCE: Three quarters of severe epilepsies of infancy could be assigned an epilepsy syndrome or "variant syndrome" at presentation. In this era of genomic testing and advanced brain imaging, diagnosing epilepsy syndromes at presentation remains clinically useful for guiding etiologic investigation, initial treatment, and prognostication.


Assuntos
Deficiências do Desenvolvimento/epidemiologia , Epilepsias Mioclônicas/epidemiologia , Espasmos Infantis/epidemiologia , Anticonvulsivantes/uso terapêutico , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/fisiopatologia , Progressão da Doença , Eletroencefalografia , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/etiologia , Epilepsias Mioclônicas/fisiopatologia , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/epidemiologia , Síndromes Epilépticas/etiologia , Síndromes Epilépticas/fisiopatologia , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Síndrome de Lennox-Gastaut/tratamento farmacológico , Síndrome de Lennox-Gastaut/epidemiologia , Síndrome de Lennox-Gastaut/etiologia , Síndrome de Lennox-Gastaut/fisiopatologia , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/epidemiologia , Malformações do Desenvolvimento Cortical/cirurgia , Mortalidade , Índice de Gravidade de Doença , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/etiologia , Espasmos Infantis/fisiopatologia , Vitória/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA