Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glob Chang Biol ; 26(12): 6831-6851, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32893967

RESUMO

Submerged macrophytes are of key importance for the structure and functioning of shallow lakes and can be decisive for maintaining them in a clear water state. The ongoing climate change affects the macrophytes through changes in temperature and precipitation, causing variations in nutrient load, water level and light availability. To investigate how these factors jointly determine macrophyte dominance and growth, we conducted a highly standardized pan-European experiment involving the installation of mesocosms in lakes. The experimental design consisted of mesotrophic and eutrophic nutrient conditions at 1 m (shallow) and 2 m (deep) depth along a latitudinal temperature gradient with average water temperatures ranging from 14.9 to 23.9°C (Sweden to Greece) and a natural drop in water levels in the warmest countries (Greece and Turkey). We determined percent plant volume inhabited (PVI) of submerged macrophytes on a monthly basis for 5 months and dry weight at the end of the experiment. Over the temperature gradient, PVI was highest in the shallow mesotrophic mesocosms followed by intermediate levels in the shallow eutrophic and deep mesotrophic mesocosms, and lowest levels in the deep eutrophic mesocosms. We identified three pathways along which water temperature likely affected PVI, exhibiting (a) a direct positive effect if light was not limiting; (b) an indirect positive effect due to an evaporation-driven water level reduction, causing a nonlinear increase in mean available light; and (c) an indirect negative effect through algal growth and, thus, high light attenuation under eutrophic conditions. We conclude that high temperatures combined with a temperature-mediated water level decrease can counterbalance the negative effects of eutrophic conditions on macrophytes by enhancing the light availability. While a water level reduction can promote macrophyte dominance, an extreme reduction will likely decrease macrophyte biomass and, consequently, their capacity to function as a carbon store and food source.


Assuntos
Lagos , Água , Nutrientes , Suécia , Temperatura
2.
Open Res Eur ; 4: 69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915372

RESUMO

Harmful algal blooms (HABs) are a significant threat to freshwater ecosystems, and monitoring for changes in biomass is therefore important. Fluorescence in-situ sensors enable rapid and high frequency real-time data collection and have been widely used to determine chlorophyll- a (Chla) concentrations that are used as an indicator of the total algal biomass. However, conversion of fluorescence to equivalent Chla concentrations is often complicated due to biofouling, phytoplankton composition and the type of equipment used. Here, we validated measurements from 24 Chla and 12 phycocyanin (cyanobacteria indicator) fluorescence in-situ sensors (Cyclops-7F, Turner Designs) against spectrophotometrically (in-vitro) determined Chla and tested a data-cleaning procedure for eliminating data errors and impacts of non-photochemical quenching. The test was done across a range of freshwater plankton communities in 24 mesocosms (i.e. experimental tanks) with a 2x3 (high and low nutrient x ambient, IPCC-A2 and IPCC-A2+50% temperature scenarios) factorial design. For most mesocosms (tanks), we found accurate (r 2 ≥ 0.7) calibration of in-situ Chla fluorescence data using simple linear regression. An exception was tanks with high in-situ phycocyanin fluorescence, for which multiple regressions were employed, which increased the explained variance by >16%. Another exception was the low Chla concentration tanks (r 2 < 0.3). Our results also show that the high frequency in-situ fluorescence data recorded the timing of sudden Chla variations, while less frequent in-vitro sampling sometimes missed these or, when recorded, the duration of changes was inaccurately determined. Fluorescence in-situ sensors are particularly useful to detect and quantify sudden phytoplankton biomass variations through high frequency measurements, especially when using appropriate data-cleaning methods and accounting for factors that can impact the fluorescence readings.


Harmful algal blooms (HABs) may pose a significant threat to freshwater ecosystems and to animal and human health. Therefore, it is important to monitor changes in algal biomass. Traditional methods, while effective, lack the ability to provide rapid, high-frequency, real-time data. In-situ fluorescence sensors, specifically designed to measure chlorophyll- a (total phytoplankton indicator) and phycocyanin (Blue-green algae indicator), offer a promising solution. However, challenges such as biofouling, temporal changes in phytoplankton composition, and equipment variations complicate the conversion of fluorescence data into equivalent chlorophyll- a concentrations. Our study aimed to validate measurements from 24 chlorophyll- a and 12 phycocyanin fluorescence in-situ sensors (Cyclops-7F, Turner Designs). We compared these measurements against spectrophotometrically determined (in-vitro method) chlorophyll- a concentrations. Additionally, we tested a data-cleaning procedure to eliminate errors caused by different sources, such as light. The validation and testing were conducted at Lemming Experimental Mesocosm site (Denmark), in 24 experimental tanks (mesocosms) representing 2 different nutrient levels and 3 temperature scenarios. This study underlines that high-frequency in-situ fluorescence sensors can be useful, only if the user is aware of the possible interacting factors that can influence fluorescence readings (e.g. turbidity, daylight). Therefore, in-situ fluorescence sensors, when properly calibrated and validated, offer a valuable tool for monitoring harmful algal blooms. The high-frequency data provides insights into sudden variations in phytoplankton biomass, demonstrating the potential for improved real-time understanding of freshwater ecosystems.

3.
Sci Total Environ ; 939: 173573, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38823703

RESUMO

The impact of global warming on plant abundance has been widely discussed, but it remains unclear how warming affects plant physiological traits, and how these traits contribute to the abundance of aquatic plants. We explored the adjustments in physiological traits of two common aquatic plant species (Potamogeton crispus L. and Elodea canadensis Michx.) and their links to plant abundance in three temperature treatments by determining twelve physiological traits and plant abundance over an 11-month period in outdoor mesocosms. This mesocosms facility has been running uninteruptedly for 16 years, rendering the plants a unique opportunity to adapt to the warming differences. We found that 1) warming reduced the starch storage in winter for P. crispus and in summer for E. canadensis while increased the nitrogenous substances (e.g., TN, FAA, and proline) in winter for P. crispus. 2) For E. canadensis, TC, starch, SC, and sucrose contents were higher in summer than in winter regardless of warming, while TC, SC, and sucrose contents were lower in summer for P. crispus. 3) Warming decreased the association strength between physiological traits and plant abundance for P. crispus but enhanced it for E. canadensis. 4) E. canadensis showed increased interaction strength among physiological traits under warming, indicating increased metabolic exertion in the response to warming, which contributed to the reduction in abundance. Trait interaction strength of P. crispus was reduced under warming, but with less impact on plant abundance compared with E. canadensis. Our study emphasizes that warming alters the network of plant physiological traits and their contribution to abundance and that different strengths of susceptibility to warming of the various plant species may alter the composition of plant communities in freshwater ecosystems.


Assuntos
Aquecimento Global , Hydrocharitaceae/fisiologia , Potamogetonaceae/fisiologia , Estações do Ano , Plantas
4.
Sci Total Environ ; 843: 157001, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772541

RESUMO

Climate change and eutrophication are among the main stressors of shallow freshwater ecosystems, and their effects on phytoplankton community structure and primary production have been studied extensively. However, their combined effects on the algal production of polyunsaturated fatty acids (PUFA), specifically, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are currently unresolved. Moreover, the proximate reasons for changes in phytoplankton EPA and DHA concentrations are unclear, i.e., the relative importance of ecological (changes in the community composition) vs. ecophysiological (within taxa changes in EPA and DHA levels) factors. We investigated the responses of phytoplankton EPA and DHA concentrations to warming (IPCC climate scenario) and nutrient additions in mesocosms which had been run continuously at varying temperature and nutrient levels for 15 years prior to this study. Nutrient treatment had a significant effect on phytoplankton EPA and DHA concentrations and about 59 % of the variation in EPA and DHA concentrations could be explained by changes in the phytoplankton community structure. Increased biomass of diatoms corresponded with high EPA and DHA concentrations, while cyanobacteria/chlorophyte dominated mesocosm had low EPA and DHA concentrations. Warming had only a marginal effect on the EPA and DHA concentrations in these mesocosms. However, a significant interaction was observed with warming and N:P ratio. Our findings indicate that direct nutrient/temperature effects on algal physiology and PUFA metabolism were negligible and the changes in EPA and DHA concentrations were mostly related to the phytoplankton community structure and biomass. These results also imply that in shallow temperate lakes eutrophication, leading to increased dominance of cyanobacteria, will probably be a greater threat to phytoplankton EPA and DHA production than warming. EPA and DHA are nutritionally important for upper trophic level consumers and decreased production may impair secondary production.


Assuntos
Cianobactérias , Fitoplâncton , Ácidos Docosa-Hexaenoicos/metabolismo , Ecossistema , Ácido Eicosapentaenoico/metabolismo , Eutrofização , Ácidos Graxos Insaturados , Lagos , Fitoplâncton/fisiologia
5.
ISME Commun ; 1(1): 32, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37938256

RESUMO

Freshwater ecosystems are the largest natural source of the greenhouse gas methane (CH4), with shallow lakes a particular hot spot. Eutrophication and warming generally increase lake CH4 emissions but their impacts on the sole biological methane sink-methane oxidation-and methane-oxidizer community dynamics are poorly understood. We used the world's longest-running freshwater climate-change mesocosm experiment to determine how methane-oxidizing bacterial (MOB) abundance and composition, and methane oxidation potential in the sediment respond to eutrophication, short-term nitrogen addition and warming. After nitrogen addition, MOB abundance and methane oxidation potential increased, while warming increased MOB abundance without altering methane oxidation potential. MOB community composition was driven by both temperature and nutrient availability. Eutrophication increased relative abundance of type I MOB Methyloparacoccus. Warming favoured type II MOB Methylocystis over type I MOB Methylomonadaceae, shifting the MOB community from type I dominance to type I and II co-dominance, thereby altering MOB community traits involved in growth and stress-responses. This shift to slower-growing MOB may explain why higher MOB abundance in warmed mesocosms did not coincide with higher methane oxidation potential. Overall, we show that eutrophication and warming differentially change the MOB community, resulting in an altered ability to mitigate CH4 emissions from shallow lakes.

6.
Toxins (Basel) ; 10(4)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652856

RESUMO

Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.


Assuntos
Toxinas Bacterianas/análise , Cianobactérias , Lagos/microbiologia , Microcistinas/análise , Tropanos/análise , Uracila/análogos & derivados , Poluentes da Água/análise , Alcaloides , Mudança Climática , Toxinas de Cianobactérias , Monitoramento Ambiental , Europa (Continente) , Temperatura , Uracila/análise
7.
Sci Total Environ ; 581-582: 413-425, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069301

RESUMO

Inter- and intra-annual water level fluctuations and changes in water flow regime are intrinsic characteristics of Mediterranean lakes. Additionally, considering climate change projections for the water-limited Mediterranean region, increased air temperatures and decreased precipitation are anticipated, leading to dramatic declines in lake water levels as well as severe water scarcity problems. The study site, Lake Beysehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - threatened by climatic changes and over-abstraction of water for irrigated crop farming. Therefore, implementation of strict water level management policies is required. In this study, an integrated modeling approach was used to predict the future water levels of Lake Beysehir in response to potential future changes in climate and land use. Water level estimation was performed by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Regression model (ε-SVR). The projected increase in temperature and decrease in precipitation based on the climate change models led to an enhanced potential evapotranspiration and reduced total runoff. On the other hand, the effects of various land use scenarios within the catchment appeared to be comparatively insignificant. According to the ε-SVR model results, changes in hydrological processes caused a water level reduction for all scenarios. Moreover, the MPI-ESM-MR General Circulation Model outputs produced the most dramatic results by predicting that Lake Beysehir may dry out by the 2040s with the current outflow regime. The results indicate that shallow Mediterranean lakes may face a severe risk of drying out and losing their ecosystem values in the near future if the current intensity of water abstraction is not reduced. In addition, the results also demonstrate that outflow management and sustainable use of water sources are vital to sustain lake ecosystems in water-limited regions.

8.
Nanotoxicology ; 10(7): 902-12, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26901391

RESUMO

Over the course of 78 days, nine outdoor mesocosms, each with 1350 L capacity, were situated on a pontoon platform in the middle of a lake and exposed to 0 µg L(-1) TiO2, 25 µg L(-1) TiO2 or 250 µg L(-1) TiO2 nanoparticles in the form of E171 TiO2 human food additive five times a week. Mesocosms were inoculated with sediment, phytoplankton, zooplankton, macroinvertebrates, macrophytes and fish before exposure, ensuring a complete food web. Physicochemical parameters of the water, nutrient concentrations, and biomass of the taxa were monitored. Concentrations of 25 µg L(-1) TiO2 and 250 µg L(-1) TiO2 caused a reduction in available soluble reactive phosphorus in the mesocosms by 15 and 23%, respectively, but not in the amount of total phosphorus. The biomass of Rotifera was significantly reduced by 32 and 57% in the TiO2 25 µg L(-1) and TiO2 250 µg L(-1) treatments, respectively, when compared to the control; however, the biomass of the other monitored groups-Cladocera, Copepoda, phytoplankton, macrophytes, chironomids and fish-remained unaffected. In conclusion, environmentally relevant concentrations of TiO2 nanoparticles may negatively affect certain parameters and taxa of the freshwater lentic aquatic ecosystem. However, these negative effects are not significant enough to affect the overall function of the ecosystem, as there were no cascade effects leading to a major change in its trophic state or primary production.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Água Doce/química , Nanopartículas/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomassa , Cadeia Alimentar , Humanos , Nanopartículas/análise , Fósforo/análise , Fitoplâncton/efeitos dos fármacos , Titânio/análise , Poluentes Químicos da Água/análise , Zooplâncton/efeitos dos fármacos
9.
Sci Total Environ ; 563-564: 456-67, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27151502

RESUMO

The water balance, with large seasonal and annual water level fluctuations, has a critical influence on the nitrogen and phosphorus dynamics of shallow lakes in the semi-arid climate zone. We constructed seasonal water and nutrient budgets for two connected shallow lakes, Lakes Mogan and Eymir, located in Central Anatolia, Turkey. The study period covered 20years with alternations between dry and wet years as well as restoration efforts including sewage effluent diversion and biomanipulations in Lake Eymir. Both lakes experienced a 1-2m water level drop during a drought period and a subsequent increase during the wet period, with seasonal water level fluctuations of 0.60 to 0.70m. During wet years with high water levels, small seasonal differences were observed with a nutrient peak in spring caused by external loading and nutrient loss via retention during summer. During years with low water levels, nutrient concentrations increased due to internal and external loading, exacerbated by evaporative water loss. In Lake Eymir, a shift to eutrophic conditions with turbid water occurred under low water level conditions and consequent internal loading of P from the sediment, causing high nutrient concentrations in summer. Our results indicate a threat of lakes drying out in the semi-arid climate zone if evaporation increases and precipitation decreases as anticipated from the global climate change predictions. In addition, our results show the influence of the water balance on the eutrophication of shallow lakes in the Mediterranean climate zone and highlight the ultimate consequences for lake management.


Assuntos
Clima , Lagos/química , Nitrogênio/análise , Fósforo/análise , Ciclo do Nitrogênio , Estações do Ano , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA