RESUMO
Disrupted sleep-wake and molecular circadian rhythms are a feature of aging associated with metabolic disease and reduced levels of NAD+, yet whether changes in nucleotide metabolism control circadian behavioral and genomic rhythms remains unknown. Here, we reveal that supplementation with the NAD+ precursor nicotinamide riboside (NR) markedly reprograms metabolic and stress-response pathways that decline with aging through inhibition of the clock repressor PER2. NR enhances BMAL1 chromatin binding genome-wide through PER2K680 deacetylation, which in turn primes PER2 phosphorylation within a domain that controls nuclear transport and stability and that is mutated in human advanced sleep phase syndrome. In old mice, dampened BMAL1 chromatin binding, transcriptional oscillations, mitochondrial respiration rhythms, and late evening activity are restored by NAD+ repletion to youthful levels with NR. These results reveal effects of NAD+ on metabolism and the circadian system with aging through the spatiotemporal control of the molecular clock.
Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores Etários , Envelhecimento/genética , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/fisiologia , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Proteínas Circadianas Period/genética , Sirtuína 1/metabolismo , Sirtuínas/metabolismoRESUMO
eIF2A was the first eukaryotic initiator tRNA carrier discovered but its exact function has remained enigmatic. Uncharacteristic of translation initiation factors, eIF2A is reported to be non-cytosolic in multiple human cancer cell lines. Attempts to study eIF2A mechanistically have been limited by the inability to achieve high yield of soluble recombinant protein. Here, we developed a purification paradigm that yields â¼360-fold and â¼6000-fold more recombinant human eIF2A from Escherichia coli and insect cells, respectively, than previous reports. Using a mammalian in vitro translation system, we found that increased levels of recombinant human eIF2A inhibit translation of multiple reporter mRNAs, including those that are translated by cognate and near-cognate start codons, and does so prior to start codon recognition. eIF2A also inhibited translation directed by all four types of cap-independent viral IRESs, including the CrPV IGR IRES that does not require initiation factors or initiator tRNA, suggesting excess eIF2A sequesters 40S subunits. Supplementation with additional 40S subunits prevented eIF2A-mediated inhibition and pull-down assays demonstrated direct binding between recombinant eIF2A and purified 40S subunits. These data support a model that eIF2A must be kept away from the translation machinery to avoid sequestering 40S ribosomal subunits.
Assuntos
Fator de Iniciação 2 em Eucariotos , Biossíntese de Proteínas , Subunidades Ribossômicas Menores de Eucariotos , Animais , Humanos , Códon de Iniciação/metabolismo , Sítios Internos de Entrada Ribossomal , Mamíferos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência de Metionina/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismoRESUMO
Intrinsic circadian clocks are present in all forms of photosensitive life, enabling daily anticipation of the light/dark cycle and separation of energy storage and utilization cycles on a 24-h timescale. The core mechanism underlying circadian rhythmicity involves a cell-autonomous transcription/translation feedback loop that in turn drives rhythmic organismal physiology. In mammals, genetic studies have established that the core clock plays an essential role in maintaining metabolic health through actions within both brain pacemaker neurons and peripheral tissues and that disruption of the clock contributes to disease. Peripheral clocks, in turn, can be entrained by metabolic cues. In this review, we focus on the role of the nucleotide NAD(P)(H) and NAD+-dependent sirtuin deacetylases as integrators of circadian and metabolic cycles, as well as the implications for this interrelationship in healthful aging.
Assuntos
Relógios Circadianos , Sirtuínas , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos/metabolismo , NAD/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismoRESUMO
The chemical bond is the cornerstone of chemistry, providing a conceptual framework to understand and predict the behavior of molecules in complex systems. However, the fundamental origin of chemical bonding remains controversial and has been responsible for fierce debate over the past century. Here, we present a unified theory of bonding, using a separation of electron delocalization effects from orbital relaxation to identify three mechanisms [node-induced confinement (typically associated with Pauli repulsion, though more general), orbital contraction, and polarization] that each modulate kinetic energy during bond formation. Through analysis of a series of archetypal bonds, we show that an exquisite balance of energy-lowering delocalizing and localizing effects are dictated simply by atomic electron configurations, nodal structure, and electronegativities. The utility of this unified bonding theory is demonstrated by its application to explain observed trends in bond strengths throughout the periodic table, including main group and transition metal elements.
RESUMO
RATIONALE & OBJECTIVE: Glomerular disorders have a highly variable clinical course, and biomarkers that reflect the molecular mechanisms underlying their progression are needed. Based on our previous work identifying plasminogen as a direct cause of podocyte injury, we designed this study to test the association between urine plasmin(ogen) (ie, plasmin and its precursor plasminogen) and end-stage kidney disease (ESKD). STUDY DESIGN: Multicenter cohort study. SETTING & PARTICIPANTS: 1,010 patients enrolled in the CureGN Cohort with biopsy-proven glomerular disease (focal segmental glomerulosclerosis, membranous nephropathy, and immunoglobulin A nephropathy). PREDICTORS: The main predictor was urine plasmin(ogen) at baseline. Levels were measured by an electrochemiluminescent immunoassay developed de novo. Traditional clinical and analytical characteristics were used for adjustment. The ratio of urine plasmin(ogen)/expected plasmin(ogen) was evaluated as a predictor in a separate model. OUTCOME: Progression to ESKD. ANALYTICAL APPROACH: Cox regression was used to examine the association between urinary plasmin(ogen) and time to ESKD. Urinary markers were log2 transformed to approximate normal distribution and normalized to urinary creatinine (Log2uPlasminogen/cr, Log2 urinary protein/cr [UPCR]). Expected plasmin(ogen) was calculated by multiple linear regression. RESULTS: Adjusted Log2uPlasminogen/cr was significantly associated with ESKD (HR per doubling Log2 uPlasminogen/cr 1.31 [95% CI, 1.22-1.40], P<0.001). Comparison of the predictive performance of the models including Log2 uPlasminogen/cr, Log2 UPCR, or both markers showed the plasmin(ogen) model superiority. The ratio of measured/expected urine plasmin(ogen) was independently associated with ESKD: HR, 0.41 (95% CI, 0.22-0.77) if ratio<0.8 and HR 2.42 (95% CI, 1.54-3.78) if ratio>1.1 (compared with ratio between 0.8 and 1.1). LIMITATIONS: Single plasmin(ogen) determination does not allow for the study of changes over time. The use of a cohort of mostly white patients and the restriction to patients with 3 glomerular disorders limits the external validity of our analysis. CONCLUSIONS: Urinary plasmin(ogen) and the ratio of measured/expected plasmin(ogen) are independently associated with ESKD in a cohort of patients with glomerular disease. Taken together with our previous experimental findings, urinary plasmin(ogen) could be a useful biomarker in prognostic decision making and a target for the development of novel therapies in patients with proteinuria and glomerular disease. PLAIN-LANGUAGE SUMMARY: Glomerular diseases are an important cause of morbidity and mortality in patients of all ages. Knowing the individual risk of progression to dialysis or transplantation would help to plan the follow-up and treatment of these patients. Our work studies the usefulness of urinary plasminogen as a marker of progression in this context, since previous studies indicate that plasminogen may be involved in the mechanisms responsible for the progression of these disorders. Our work in a sample of 1,010 patients with glomerular disease demonstrates that urinary plasminogen (as well as the ratio of measured to expected plasminogen) is associated with the risk of progression to end-stage kidney disease. Urine plasminogen exhibited good performance and, if further validated, could enable risk stratification for timely interventions in patients with proteinuria and glomerular disease.
Assuntos
Biomarcadores , Progressão da Doença , Falência Renal Crônica , Plasminogênio , Humanos , Masculino , Feminino , Biomarcadores/urina , Plasminogênio/urina , Plasminogênio/metabolismo , Pessoa de Meia-Idade , Adulto , Falência Renal Crônica/urina , Estudos de Coortes , Glomerulosclerose Segmentar e Focal/urina , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulonefrite por IGA/urina , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite Membranosa/urina , Glomerulonefrite Membranosa/diagnóstico , Fibrinolisina/urina , Fibrinolisina/metabolismoRESUMO
As cardiovascular care continues to advance and with an aging population with higher comorbidities, the epidemiology of the cardiac intensive care unit has undergone a paradigm shift. There has been increasing emphasis on the development of multidisciplinary teams (MDTs) for providing holistic care to complex critically ill patients, analogous to heart teams for chronic cardiovascular care. Outside of cardiovascular medicine, MDTs in critical care medicine focus on implementation of guideline-directed care, prevention of iatrogenic harm, communication with patients and families, point-of-care decision-making, and the development of care plans. MDTs in acute cardiovascular care include physicians from cardiovascular medicine, critical care medicine, interventional cardiology, cardiac surgery, and advanced heart failure, in addition to nonphysician team members. In this document, we seek to describe the changes in patients in the cardiac intensive care unit, health care delivery, composition, logistics, outcomes, training, and future directions for MDTs involved in acute cardiovascular care. As a part of the comprehensive review, we performed a scoping of concepts of MDTs, acute hospital care, and cardiovascular conditions and procedures.
Assuntos
Doenças Cardiovasculares , Equipe de Assistência ao Paciente , Humanos , Equipe de Assistência ao Paciente/organização & administração , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/epidemiologia , Cuidados Críticos/tendências , Cuidados Críticos/métodos , PrevisõesRESUMO
This paper is dedicated to the quantum chemical package Jaguar, which is commercial software developed and distributed by Schrödinger, Inc. We discuss Jaguar's scientific features that are relevant to chemical research as well as describe those aspects of the program that are pertinent to the user interface, the organization of the computer code, and its maintenance and testing. Among the scientific topics that feature prominently in this paper are the quantum chemical methods grounded in the pseudospectral approach. A number of multistep workflows dependent on Jaguar are covered: prediction of protonation equilibria in aqueous solutions (particularly calculations of tautomeric stability and pKa), reactivity predictions based on automated transition state search, assembly of Boltzmann-averaged spectra such as vibrational and electronic circular dichroism, as well as nuclear magnetic resonance. Discussed also are quantum chemical calculations that are oriented toward materials science applications, in particular, prediction of properties of optoelectronic materials and organic semiconductors, and molecular catalyst design. The topic of treatment of conformations inevitably comes up in real world research projects and is considered as part of all the workflows mentioned above. In addition, we examine the role of machine learning methods in quantum chemical calculations performed by Jaguar, from auxiliary functions that return the approximate calculation runtime in a user interface, to prediction of actual molecular properties. The current work is second in a series of reviews of Jaguar, the first having been published more than ten years ago. Thus, this paper serves as a rare milestone on the path that is being traversed by Jaguar's development in more than thirty years of its existence.
RESUMO
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in PKD1 and PKD2 (PKD1/2), has unexplained phenotypic variability likely affected by environmental and other genetic factors. Approximately 10% of individuals with ADPKD phenotype have no causal mutation detected, possibly due to unrecognized risk variants of PKD1/2. This study was designed to identify risk variants of PKD genes through population genetic analyses. We used Wright's F-statistics (Fst) to evaluate common single nucleotide variants (SNVs) potentially favored by positive natural selection in PKD1 from 1000 Genomes Project (1KG) and genotyped 388 subjects from the Rogosin Institute ADPKD Data Repository. The variants with >90th percentile Fst scores underwent further investigation by in silico analysis and molecular genetics analyses. We identified a deep intronic SNV, rs3874648G> A, located in a conserved binding site of the splicing regulator Tra2-ß in PKD1 intron 30. Reverse-transcription PCR (RT-PCR) of peripheral blood leukocytes (PBL) from an ADPKD patient homozygous for rs3874648-A identified an atypical PKD1 splice form. Functional analyses demonstrated that rs3874648-A allele increased Tra2-ß binding affinity and activated a cryptic acceptor splice-site, causing a frameshift that introduced a premature stop codon in mRNA, thereby decreasing PKD1 full-length transcript level. PKD1 transcript levels were lower in PBL from rs3874648-G/A carriers than in rs3874648-G/G homozygotes in a small cohort of normal individuals and patients with PKD2 inactivating mutations. Our findings indicate that rs3874648G > A is a PKD1 expression modifier attenuating PKD1 expression through Tra2-ß, while the derived G allele advantageously maintains PKD1 expression and is predominant in all subpopulations.
Assuntos
Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Humanos , Íntrons , Mutação , Nucleotídeos , Rim Policístico Autossômico Dominante/genética , Sítios de Splice de RNA , Canais de Cátion TRPP/genéticaRESUMO
Quantum chemistry in the form of density functional theory (DFT) calculations is a powerful numerical experiment for predicting intermolecular interaction energies. However, no chemical insight is gained in this way beyond predictions of observables. Energy decomposition analysis (EDA) can quantitatively bridge this gap by providing values for the chemical drivers of the interactions, such as permanent electrostatics, Pauli repulsion, dispersion, and charge transfer. These energetic contributions are identified by performing DFT calculations with constraints that disable components of the interaction. This review describes the second-generation version of the absolutely localized molecular orbital EDA (ALMO-EDA-II). The effects of different physical contributions on changes in observables such as structure and vibrational frequencies upon complex formation are characterized via the adiabatic EDA. Example applications include red- versus blue-shifting hydrogen bonds; the bonding and frequency shifts of CO, N2, and BF bound to a [Ru(II)(NH3)5]2 + moiety; and the nature of the strongly bound complexes between pyridine and the benzene and naphthalene radical cations. Additionally, the use of ALMO-EDA-II to benchmark and guide the development of advanced force fields for molecular simulation is illustrated with the recent, very promising, MB-UCB potential.
RESUMO
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has disproportionately affected socially disadvantaged populations. Whether disparities in COVID-19 incidence related to race/ethnicity and socioeconomic factors exist in the hemodialysis population is unknown. METHODS: Our study involved patients receiving in-center hemodialysis in New York City. We used a validated index of neighborhood social vulnerability, the Social Vulnerability Index (SVI), which comprises 15 census tract-level indicators organized into four themes: socioeconomic status, household composition and disability, minority status and language, and housing type and transportation. We examined the association of race/ethnicity and the SVI with symptomatic COVID-19 between March 1, 2020 and August 3, 2020. COVID-19 cases were ascertained using PCR testing. We performed multivariable logistic regression to adjust for demographics, individual-level social factors, dialysis-related medical history, and dialysis facility factors. RESULTS: Of the 1378 patients on hemodialysis in the study, 247 (17.9%) developed symptomatic COVID-19. In adjusted analyses, non-Hispanic Black and Hispanic patients had significantly increased odds of COVID-19 compared with non-Hispanic White patients. Census tract-level overall SVI, modeled continuously or in quintiles, was not associated with COVID-19 in unadjusted or adjusted analyses. Among non-Hispanic White patients, the socioeconomic status SVI theme, the minority status and language SVI theme, and housing crowding were significantly associated with COVID-19 in unadjusted analyses. CONCLUSIONS: Among patients on hemodialysis in New York City, there were substantial racial/ethnic disparities in COVID-19 incidence not explained by neighborhood-level social vulnerability. Neighborhood-level socioeconomic status, minority status and language, and housing crowding were positively associated with acquiring COVID-19 among non-Hispanic Whites. Our findings suggest that socially vulnerable patients on dialysis face disparate COVID-19-related exposures, requiring targeted risk-mitigation strategies.
Assuntos
COVID-19/complicações , COVID-19/epidemiologia , Disparidades nos Níveis de Saúde , Falência Renal Crônica/complicações , Diálise Renal , SARS-CoV-2 , Adolescente , Adulto , Negro ou Afro-Americano , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Hispânico ou Latino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Pandemias , Características de Residência , Estudos Retrospectivos , Fatores de Risco , Fatores Socioeconômicos , Populações Vulneráveis , População Branca , Adulto JovemRESUMO
BACKGROUND: Mindfulness training (MT) may promote medication adherence in outpatients with heart failure. OBJECTIVE: The aims of this study were to determine the feasibility and acceptability of MT (primary outcomes) and explore effects on medication adherence, functional capacity, cognitive function, depression, and mindfulness skills (secondary outcomes). METHODS: In this pre/post-design study, participants received a 30-minute phone-delivered MT session weekly for 8 weeks. RESULTS: We enrolled 33 outpatients (32% women; 69.7 White; mean age, 60.3 years). Retention was 100%, and session attendance was 91%. Overall, participants (97%) rated MT as enjoyable. Objectively assessed ( P < .05) adherence decreased post intervention, whereas improvements were noted in functional capacity ( P = .05), mindfulness ( P < .05), and cognitive function (reaching significance for Flanker scores). CONCLUSIONS: Phone-delivered MT was feasible and acceptable. Whereas no improvements were noted in medication adherence and depression, cognitive function, functional capacity, and mindfulness levels increased post intervention, suggesting MT may have beneficial effects in outpatients with heart failure.
Assuntos
Insuficiência Cardíaca , Atenção Plena , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos de Viabilidade , Pacientes Ambulatoriais , Adesão à Medicação , Doença Crônica , Insuficiência Cardíaca/tratamento farmacológicoRESUMO
Anionic molecular models for nonhydrolyzed and partially hydrolyzed aluminum and gallium framework sites on silica, M[OSi(OtBu)3 ]4 - and HOM[OSi(OtBu)3 ]3 - (where M=Al or Ga), were synthesized from anionic chlorides Li{M[OSi(OtBu)3 ]3 Cl} in salt metathesis reactions. Sequestration of lithium cations with [12]crown-4 afforded charge-separated ion pairs composed of monomeric anions M[OSi(OtBu)3 ]4 - with outer-sphere [([12]crown-4)2 Li]+ cations, and hydroxides {HOM[OSi(OtBu)3 ]3 } with pendant [([12]crown-4)Li]+ cations. These molecular models were characterized by single-crystal X-ray diffraction, vibrational spectroscopy, mass spectrometry and NMR spectroscopy. Upon treatment of monomeric [([12]crown-4)Li]{HOM[OSi(OtBu)3 ]3 } complexes with benzyl alcohol, benzyloxide complexes were formed, modeling a possible pathway for the formation of active sites for Meerwin-Ponndorf-Verley (MPV) transfer hydrogenations with Al/Ga-doped silica catalysts.
RESUMO
In contrast to the computational generation of conventional tautomers, the analogous operation that would produce ring-chain tautomers is rarely available in cheminformatics codes. This is partly due to the perceived unimportance of ring-chain tautomerism and partly because specialized algorithms are required to realize the non-local proton transfers that occur during ring-chain rearrangement. Nevertheless, for some types of organic compounds, including sugars, warfarin analogs, fluorescein dyes and some drug-like compounds, ring-chain tautomerism cannot be ignored. In this work, a novel ring-chain tautomer generation algorithm is presented. It differs from previously proposed solutions in that it does not rely on hard-coded patterns of proton migrations and bond rearrangements, and should therefore be more general and maintainable. We deploy this algorithm as part of a workflow which provides an automated solution for tautomer generation and scoring. The workflow identifies protonatable and deprotonatable sites in the molecule using a previously described approach based on rapid micro-pKa prediction. These data are used to distribute the active protons among the protonatable sites exhaustively, at which point alternate resonance structures are considered to obtain pairs of atoms with opposite formal charge. These pairs are connected with a single bond and a 3D undistorted geometry is generated. The scoring of the generated tautomers is performed with a subsequent density functional theory calculation employing an implicit solvent model. We demonstrate the performance of our workflow on several types of organic molecules known to exist in ring-chain tautomeric equilibria in solution. In particular, we show that some ring-chain tautomers not found using previously published algorithms are successfully located by ours.
Assuntos
Preparações Farmacêuticas/química , Teoria Quântica , Bibliotecas de Moléculas Pequenas/química , Isomerismo , Estrutura MolecularRESUMO
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.
RESUMO
The effects of framing on risky decision-making have been studied extensively in research using Kahneman and Tversky's (1981) hypothetical scenario about a contagious Asian disease. The COVID-19 pandemic offers a unique opportunity to test how message framing affects risky decision-making when millions of real lives are at stake worldwide. In a sample of US adults (N = 294), we investigated the effects of message framing and personality (Dark Triad traits) in relation to risky decision-making during the COVID-19 crisis. We found that both gain- and loss-framing influenced risk choice in response to COVID-19. People were more risk-averse in the loss condition of the current study compared to the benchmark established by Tversky and Kahneman (1981). Among the Dark Triad traits, psychopathy emerged as the significant predictor of risk taking, suggesting that people who score high in psychopathy are more likely to gamble with other people's lives during the COVID-19 crisis. We suggest that both voters and pandemic-related public awareness campaigns should consider the possibility that decision-makers with psychopathic tendencies may take greater risks with other people's lives during a pandemic. In addition, the framing of public-health messages should be tailored to increase the chances of compliance with government restrictions.
Assuntos
Transtorno da Personalidade Antissocial/psicologia , COVID-19/psicologia , Tomada de Decisões/fisiologia , Assunção de Riscos , Adolescente , Adulto , Idoso , Transtorno da Personalidade Antissocial/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Feminino , Previsões , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Personalidade/fisiologia , Adulto JovemRESUMO
Intermolecular interactions between radicals and closed-shell molecules are ubiquitous in chemical processes, ranging from the benchtop to the atmosphere and extraterrestrial space. While energy decomposition analysis (EDA) schemes for closed-shell molecules can be generalized for studying radical-molecule interactions, they face challenges arising from the unique characteristics of the electronic structure of open-shell species. In this work, we introduce additional steps that are necessary for the proper treatment of radical-molecule interactions to our previously developed unrestricted Absolutely Localized Molecular Orbital (uALMO)-EDA based on density functional theory calculations. A "polarize-then-depolarize" (PtD) scheme is used to remove arbitrariness in the definition of the frozen wavefunction, rendering the ALMO-EDA results independent of the orientation of the unpaired electron obtained from isolated fragment calculations. The contribution of radical rehybridization to polarization energies is evaluated. It is also valuable to monitor the wavefunction stability of each intermediate state, as well as their associated spin density profiles, to ensure the EDA results correspond to a desired electronic state. These radical extensions are incorporated into the "vertical" and "adiabatic" variants of uALMO-EDA for studies of energy changes and property shifts upon complexation. The EDA is validated on two model complexes, H2OËF and FHËOH. It is then applied to several chemically interesting radical-molecule complexes, including the sandwiched and T-shaped benzene dimer radical cation, complexes of pyridine with benzene and naphthalene radical cations, binary and ternary complexes of the hydroxyl radical with water (ËOH(H2O) and ËOH(H2O)2), and the pre-reactive complexes and transition states in the ËOH + HCHO and ËOH + CH3CHO reactions. These examples suggest that this second generation uALMO-EDA is a useful tool for furthering one's understanding of both energetic and property changes associated with radical-molecule interactions.
RESUMO
An energy decomposition analysis (EDA) for single chemical bonds is presented within the framework of Kohn-Sham density functional theory based on spin projection equations that are exact within wave function theory. Chemical bond energies can then be understood in terms of stabilization caused by spin-coupling augmented by dispersion, polarization, and charge transfer in competition with destabilizing Pauli repulsions. The EDA reveals distinguishing features of chemical bonds ranging across nonpolar, polar, ionic, and charge-shift bonds. The effect of electron correlation is assessed by comparison with Hartree-Fock results. Substituent effects are illustrated by comparing the C-C bond in ethane against that in bis(diamantane), and dispersion stabilization in the latter is quantified. Finally, three metal-metal bonds in experimentally characterized compounds are examined: a [Formula: see text]-[Formula: see text] dimer, the [Formula: see text]-[Formula: see text] bond in dizincocene, and the Mn-Mn bond in dimanganese decacarbonyl.
RESUMO
PURPOSE: With the availability of ultra-sensitive PSA assays, early biochemical relapse (eBCR) of prostate cancer is increasingly being detected at values much lower than the conventional threshold of 0.2 ng/ml. Accurate localisation of disease in this setting may allow treatment modification and improved outcomes, especially in patients with pelvis-confined or extra-pelvic oligometastasis (defined as up to three pelvic nodal or distant sites). We aimed to measure the detection rate of [68]Ga-PSMA-HBNED-CC (PSMA)-PET/CT and its influence on patient management in eBCR of prostate cancer following radical prostatectomy (RP). METHODS: We retrospectively identified 28 patients who underwent PSMA-PET/CT for post-RP eBCR (PSA < 0.5 ng/ml) at our tertiary care cancer centre. Two nuclear medicine physicians independently recorded the sites of PSMA-PET/CT positivity. Multidisciplinary meeting records were accessed to determine changes in management decisions following PSMA-PET/CT scans. RESULTS: The mean age of patients was 65.6 years (range: 50-76.2 years); median PSA was 0.22 ng/ml (interquartile range: 0.15 ng/ml to 0.34 ng/ml). Thirteen patients (46.4%) had received radiotherapy in the past. PSMA-PET/CT was positive in 17 patients (60.7%). Only one patient had polymetastasis (> 3 sites); the remainder either had prostatectomy bed recurrence (n = 2), pelvic oligometastasis (n = 10), or extra-pelvic oligometastasis (n = 4). PSMA-PET/CT resulted in management change in 12 patients (42.8%), involving stereotactic body radiotherapy (n = 6), salvage radiotherapy (n = 4), and systemic treatment (n = 2). CONCLUSIONS: Our findings show that PSMA-PET/CT has a high detection rate in the eBCR setting following RP, with a large proportion of patients found to have fewer than three lesions. PSMA-PET/CT may be of value in patients with early PSA failure, and impact on the choice of potentially curative salvage treatments.
Assuntos
Glicoproteínas de Membrana , Compostos Organometálicos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Idoso , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/cirurgia , Recidiva , Estudos RetrospectivosRESUMO
Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. Here, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C14H9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm(-1) resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excited states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck-Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck-Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data.
RESUMO
A divergent synthetic strategy allowed access to several members of a new class of helicenes, the "expanded helicenes", which are composed of alternating linearly and angularly fused rings. The strategy is based on a three-fold, partially intermolecular [2+2+n] (n = 1 or 2) cycloaddition with substrates containing three diyne units. Investigation of aggregation behavior, both in solution and in the solid state, revealed that one of these compounds forms an unusual homochiral, π-stacked dimer via an equilibrium that is slow on the NMR time scale. The versatility of the method was harnessed to access a selenophene-annulated expanded helicene that, in contrast to its benzannulated analogue, exhibits long-range π-stacking in the solid state. The new helicenes possess low racemization barriers, as demonstrated by dynamic 1H NMR spectroscopy.