RESUMO
Neurotransmission requires anterograde axonal transport of dense core vesicles (DCVs) containing neuropeptides and active zone components from the soma to nerve terminals. However, it is puzzling how one-way traffic could uniformly supply sequential release sites called en passant boutons. Here, Drosophila neuropeptide-containing DCVs are tracked in vivo for minutes with a new method called simultaneous photobleaching and imaging (SPAIM). Surprisingly, anterograde DCVs typically bypass proximal boutons to accumulate initially in the most distal bouton. Then, excess distal DCVs undergo dynactin-dependent retrograde transport back through proximal boutons into the axon. Just before re-entering the soma, DCVs again reverse for another round of anterograde axonal transport. While circulating over long distances, both anterograde and retrograde DCVs are captured sporadically in en passant boutons. Therefore, vesicle circulation, which includes long-range retrograde transport and inefficient bidirectional capture, overcomes the limitations of one-way anterograde transport to uniformly supply release sites with DCVs.
Assuntos
Neuropeptídeos/metabolismo , Vesículas Secretórias/metabolismo , Sinapses/metabolismo , Animais , Axônios/metabolismo , Drosophila melanogaster , Microscopia Confocal/métodos , Neurônios/citologia , Neurônios/metabolismo , Fotodegradação , Terminações Pré-Sinápticas/metabolismo , Transporte ProteicoRESUMO
Neuronal dense-core vesicles (DCVs) contain neuropeptides and much larger proteins that affect synaptic growth and plasticity. Rather than using full collapse exocytosis that commonly mediates peptide hormone release by endocrine cells, DCVs at the Drosophila neuromuscular junction release their contents via fusion pores formed by kiss-and-run exocytosis. Here, we used fluorogen-activating protein (FAP) imaging to reveal the permeability range of synaptic DCV fusion pores and then show that this constraint is circumvented by cAMP-induced extra fusions with dilating pores that result in DCV emptying. These Ca2+-independent full fusions require PKA-R2, a PKA phosphorylation site on Complexin and the acute presynaptic function of Rugose, the homolog of mammalian neurobeachin, a PKA-R2 anchor implicated in learning and autism. Therefore, localized Ca2+-independent cAMP signaling opens dilating fusion pores to release large cargoes that cannot pass through the narrower fusion pores that mediate spontaneous and activity-dependent neuropeptide release. These results imply that the fusion pore is a variable filter that differentially sets the composition of proteins released at the synapse by independent exocytosis triggers responsible for routine peptidergic transmission (Ca2+) and synaptic development (cAMP).
Assuntos
Proteínas de Drosophila , Neuropeptídeos , Animais , Vesículas Sinápticas/metabolismo , Cálcio/metabolismo , Sinapses/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Transmissão Sináptica/fisiologia , Neuropeptídeos/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Mamíferos/metabolismoRESUMO
Neuropeptides control rhythmic behaviors, but the timing and location of their release within circuits is unknown. Here, imaging in the brain shows that synaptic neuropeptide release by Drosophila clock neurons is diurnal, peaking at times of day that were not anticipated by prior electrical and Ca2+ data. Furthermore, hours before peak synaptic neuropeptide release, neuropeptide release occurs at the soma, a neuronal compartment that has not been implicated in peptidergic transmission. The timing disparity between release at the soma and terminals results from independent and compartmentalized mechanisms for daily rhythmic release: consistent with conventional electrical activity-triggered synaptic transmission, terminals require Ca2+ influx, while somatic neuropeptide release is triggered by the biochemical signal IP3 Upon disrupting the somatic mechanism, the rhythm of terminal release and locomotor activity period are unaffected, but the number of flies with rhythmic behavior and sleep-wake balance are reduced. These results support the conclusion that somatic neuropeptide release controls specific features of clock neuron-dependent behaviors. Thus, compartment-specific mechanisms within individual clock neurons produce temporally and spatially partitioned neuropeptide release to expand the peptidergic connectome underlying daily rhythmic behaviors.
Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Drosophila , Técnicas In Vitro , Masculino , Microscopia ConfocalRESUMO
Neuropeptides are important for regulating numerous neural functions and behaviors. Release of neuropeptides requires long-lasting, high levels of cytosolic Ca2+ However, the molecular regulation of neuropeptide release remains to be clarified. Recently, Stac3 was identified as a key regulator of L-type Ca2+ channels (CaChs) and excitation-contraction coupling in vertebrate skeletal muscles. There is a small family of stac genes in vertebrates with other members expressed by subsets of neurons in the central nervous system. The function of neural Stac proteins, however, is poorly understood. Drosophila melanogaster contain a single stac gene, Dstac, which is expressed by muscles and a subset of neurons, including neuropeptide-expressing motor neurons. Here, genetic manipulations, coupled with immunolabeling, Ca2+ imaging, electrophysiology, and behavioral analysis, revealed that Dstac regulates L-type CaChs (Dmca1D) in Drosophila motor neurons and this, in turn, controls the release of neuropeptides.
Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Neuropeptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Técnicas de Observação do Comportamento , Comportamento Animal , Drosophila melanogaster , Feminino , Microscopia Intravital , Larva , Masculino , Modelos Animais , Neurônios Motores/citologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Junção Neuromuscular/citologia , Imagem Óptica , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismoRESUMO
Synaptic release of neuropeptides packaged in dense-core vesicles (DCVs) regulates synapses, circuits, and behaviors including feeding, sleeping, and pain perception. Here, synaptic DCV fusion pore openings are imaged without interference from cotransmitting small synaptic vesicles (SSVs) with the use of a fluorogen-activating protein (FAP). Activity-evoked kiss and run exocytosis opens synaptic DCV fusion pores away from active zones that readily conduct molecules larger than most native neuropeptides (i.e., molecular weight [MW] up to, at least, 4.5 kDa). Remarkably, these synaptic fusion pores also open spontaneously in the absence of stimulation and extracellular Ca2+ SNARE perturbations demonstrate different mechanisms for activity-evoked and spontaneous fusion pore openings with the latter sharing features of spontaneous small molecule transmitter release by active zone-associated SSVs. Fusion pore opening at resting synapses provides a mechanism for activity-independent peptidergic transmission.
Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Exocitose/fisiologia , Neuropeptídeos/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Neuropeptídeos/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Sinápticas/genéticaRESUMO
Many neurons influence their targets through co-release of neuropeptides and small-molecule transmitters. Neuropeptides are packaged into dense-core vesicles (DCVs) in the soma and then transported to synapses, while small-molecule transmitters such as monoamines are packaged by vesicular transporters that function at synapses. These separate packaging mechanisms point to activity, by inducing co-release as the sole scaler of co-transmission. Based on screening in Drosophila for increased presynaptic neuropeptides, the receptor protein tyrosine phosphatase (Rptp) Ptp4E was found to post-transcriptionally regulate neuropeptide content in single DCVs at octopamine synapses. This occurs without changing neuropeptide release efficiency, transport and DCV size measured by both stimulated emission depletion super-resolution and transmission electron microscopy. Ptp4E also controls the presynaptic abundance and activity of the vesicular monoamine transporter (VMAT), which packages monoamine transmitters for synaptic release. Thus, rather than rely on altering electrical activity, the Rptp regulates packaging underlying monoamine-neuropeptide co-transmission by controlling vesicular membrane transporter and luminal neuropeptide content.This article has an associated First Person interview with the first author of the paper.
Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Neuropeptídeos/fisiologia , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Vesículas Transportadoras/fisiologia , Animais , Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Neurônios/fisiologia , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/fisiologia , Vesículas Secretórias/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/fisiologiaRESUMO
Neurotransmission is mediated by synaptic exocytosis of neuropeptide-containing dense-core vesicles (DCVs) and small-molecule transmitter-containing small synaptic vesicles (SSVs). Exocytosis of both vesicle types depends on Ca2+ and shared secretory proteins. Here, we show that increasing or decreasing expression of Myopic (mop, HD-PTP, PTPN23), a Bro1 domain-containing pseudophosphatase implicated in neuronal development and neuropeptide gene expression, increases synaptic neuropeptide stores at the Drosophila neuromuscular junction (NMJ). This occurs without altering DCV content or transport, but synaptic DCV number and age are increased. The effect on synaptic neuropeptide stores is accounted for by inhibition of activity-induced Ca2+-dependent neuropeptide release. cAMP-evoked Ca2+-independent synaptic neuropeptide release also requires optimal Myopic expression, showing that Myopic affects the DCV secretory machinery shared by cAMP and Ca2+ pathways. Presynaptic Myopic is abundant at early endosomes, but interaction with the endosomal sorting complex required for transport III (ESCRT III) protein (CHMP4/Shrub) that mediates Myopic's effect on neuron pruning is not required for control of neuropeptide release. Remarkably, in contrast to the effect on DCVs, Myopic does not affect release from SSVs. Therefore, Myopic selectively regulates synaptic DCV exocytosis that mediates peptidergic transmission at the NMJ.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Exocitose/fisiologia , Neuropeptídeos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Vesículas Secretórias/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Drosophila/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão SinápticaRESUMO
Organelles such as neuropeptide-containing dense-core vesicles (DCVs) and mitochondria travel down axons to supply synaptic boutons. DCV distribution among en passant boutons in small axonal arbors is mediated by circulation with bidirectional capture. However, it is not known how organelles are distributed in extensive arbors associated with mammalian dopamine neuron vulnerability, and with volume transmission and neuromodulation by monoamines and neuropeptides. Therefore, we studied presynaptic organelle distribution in Drosophila octopamine neurons that innervate â¼20 muscles with â¼1500 boutons. Unlike in smaller arbors, distal boutons in these arbors contain fewer DCVs and mitochondria, although active zones are present. Absence of vesicle circulation is evident by proximal nascent DCV delivery, limited impact of retrograde transport and older distal DCVs. Traffic studies show that DCV axonal transport and synaptic capture are not scaled for extensive innervation, thus limiting distal delivery. Activity-induced synaptic endocytosis and synaptic neuropeptide release are also reduced distally. We propose that limits in organelle transport and synaptic capture compromise distal synapse maintenance and function in extensive axonal arbors, thereby affecting development, plasticity and vulnerability to neurodegenerative disease.
Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Monoaminas Biogênicas/metabolismo , Neuropeptídeos/metabolismo , Vesículas Secretórias/metabolismo , Sinapses/metabolismo , Animais , Drosophila melanogaster , Neuropeptídeos/genética , Vesículas Secretórias/genética , Sinapses/genéticaRESUMO
Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches to demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.
Assuntos
Anemia Hemolítica Congênita não Esferocítica/genética , Erros Inatos do Metabolismo dos Carboidratos/genética , Drosophila melanogaster/genética , Doenças do Sistema Nervoso/genética , Vesículas Sinápticas/genética , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/genética , Anemia Hemolítica Congênita não Esferocítica/patologia , Animais , Comportamento Animal , Erros Inatos do Metabolismo dos Carboidratos/patologia , Cristalografia por Raios X , Dimerização , Humanos , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/patologia , Conformação Proteica , Vesículas Sinápticas/patologia , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/metabolismoRESUMO
Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H(+)-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca(2+)-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP(+)), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H(+) countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs.
Assuntos
Potenciais de Ação/efeitos dos fármacos , Anfetamina/farmacologia , Antipsicóticos/farmacologia , Neurônios Dopaminérgicos/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Ácidos/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Fenotiazinas/farmacologia , Fótons , Ratos Sprague-Dawley , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Vesículas Sinápticas/efeitos dos fármacosRESUMO
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. SIGNIFICANCE STATEMENT: Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Junção Neuromuscular/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Feminino , Masculino , Vesículas Secretórias/metabolismoRESUMO
Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function.
Assuntos
Drosophila/fisiologia , Neuropeptídeos/metabolismo , Sistemas Neurossecretores/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Transportadoras/fisiologia , Animais , Microscopia Confocal , Sistemas Neurossecretores/fisiologia , Terminações Pré-Sinápticas/metabolismo , Vesículas Transportadoras/metabolismoRESUMO
During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3ß kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot).
Assuntos
Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Fosfoproteínas/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/química , Coristoma/metabolismo , Drosophila melanogaster , Peptídeos e Proteínas de Sinalização Intracelular , Estabilidade Proteica , Sinapses/químicaRESUMO
Dopamine neurons in freely moving rats often fire behaviorally relevant high-frequency bursts, but depolarization block limits the maximum steady firing rate of dopamine neurons in vitro to â¼10 Hz. Using a reduced model that faithfully reproduces the sodium current measured in these neurons, we show that adding an additional slow component of sodium channel inactivation, recently observed in these neurons, qualitatively changes in two different ways how the model enters into depolarization block. First, the slow time course of inactivation allows multiple spikes to be elicited during a strong depolarization prior to entry into depolarization block. Second, depolarization block occurs near or below the spike threshold, which ranges from -45 to -30 mV in vitro, because the additional slow component of inactivation negates the sodium window current. In the absence of the additional slow component of inactivation, this window current produces an N-shaped steady-state current-voltage (I-V) curve that prevents depolarization block in the experimentally observed voltage range near -40 mV. The time constant of recovery from slow inactivation during the interspike interval limits the maximum steady firing rate observed prior to entry into depolarization block. These qualitative features of the entry into depolarization block can be reversed experimentally by replacing the native sodium conductance with a virtual conductance lacking the slow component of inactivation. We show that the activation of NMDA and AMPA receptors can affect bursting and depolarization block in different ways, depending upon their relative contributions to depolarization versus to the total linear/nonlinear conductance.
Assuntos
Neurônios Dopaminérgicos/fisiologia , Potenciais da Membrana , Mesencéfalo/fisiologia , Modelos Neurológicos , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Mesencéfalo/citologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Synaptic release of neurotransmitters is evoked by activity-dependent Ca(2+) entry into the nerve terminal. However, here it is shown that robust synaptic neuropeptide release from Drosophila motoneurons is evoked in the absence of extracellular Ca(2+) by octopamine, the arthropod homolog to norepinephrine. Genetic and pharmacology experiments demonstrate that this surprising peptidergic transmission requires cAMP-dependent protein kinase, with only a minor contribution of exchange protein activated by cAMP (epac). Octopamine-evoked neuropeptide release also requires endoplasmic reticulum Ca(2+) mobilization by the ryanodine receptor and the inositol trisphosphate receptor. Hence, rather than relying exclusively on activity-dependent Ca(2+) entry into the nerve terminal, a behaviorally important neuromodulator uses synergistic cAMP-dependent protein kinase and endoplasmic reticulum Ca(2+) signaling to induce synaptic neuropeptide release.
Assuntos
Cálcio/metabolismo , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Neuropeptídeos/metabolismo , Octopamina/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismoRESUMO
Electrophysiological studies of synaptic function do not robustly report release of neuropeptides and neurotrophins. These limitations have been overcome with the presynaptic expression of optical release reporters based on green fluorescent protein and fluorogen-activating protein. Here we describe how to image neuropeptide release in Drosophila at the neuromuscular junction and in the adult brain.
RESUMO
Genetics in Drosophila have revealed the role of neuropeptides in development and behavior. However, determining when and where neuropeptides are released has been challenging. Furthermore, the cell biology underlying neuropeptide release has largely been unexplored. Thus, it has not been possible to determine whether changes in neuropeptide immunofluorescence reflect traffic and/or release, and in neurons where such changes are not detectable, conclusions about neuropeptide release have been formulated based on the assumption that electrical and Ca2+ recordings are accurate and quantitative predictors of release. Recently, the advent of optical detection of neuropeptides tagged with fluorescent proteins and fluorogen-activating proteins (FAPs) has made it feasible to directly image vesicle traffic and exocytosis that mediates neuropeptide release in peripheral synapses and in the brain. In fact, these approaches have led to the discovery of unexpected insights concerning neuropeptide release. Here procedures are presented for optimizing fluorescence imaging of neuropeptides tagged with green fluorescent protein or a FAP.
RESUMO
Drosophila sLNv clock neurons release the neuropeptide PDF to control circadian rhythms. Strikingly, PDF content in sLNv terminals is rhythmic with a peak in the morning hours prior to the onset of activity-dependent release. Because synaptic PDF accumulation, rather than synaptic release, aligns with the late-night elevations in both sLNv neuron excitability and Ca2+, we explored the dependence of presynaptic neuropeptide accumulation on neuropeptide vesicle transport, electrical activity and the circadian clock. Live imaging reveals that anterograde axonal transport is constant throughout the day and capture of circulating neuropeptide vesicles rhythmically boosts presynaptic neuropeptide content hours prior to release. The late-night surge in vesicle capture, like release, requires electrical activity and results in a large releasable pool of presynaptic vesicles to support the later burst of neuropeptide release. The circadian clock is also required suggesting that it controls the switch from vesicle capture to exocytosis, which are normally coupled activity-dependent processes. This toggling of activity transduction maximizes rhythmic synaptic neuropeptide release needed for robust circadian behavior and resolves the previously puzzling delay in timing of synaptic neuropeptide release relative to changes in sLNv clock neuron physiology.
RESUMO
Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here, three-photon microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence, and immunogold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca(2+) channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines, and NMDA receptor antagonists.
Assuntos
Dendritos/fisiologia , Neurônios/fisiologia , Vesículas Secretórias/fisiologia , Serotonina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio Tipo L/metabolismo , Dendritos/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Fluoxetina/farmacologia , Masculino , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Vesículas Secretórias/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/metabolismoRESUMO
Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (Na(V)) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density, and gating of Na(V) currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment and Na(V) channels are distributed in multiple dendrites, selective reduction of Na(V) channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic Na(V) current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when Na(V) currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold Na(V) current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic Na(V) channels. More generally, we conclude that the somatodendritic distribution of Na(V) channels is a major determinant of repetitive spiking frequency.