Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36869848

RESUMO

Sampling circulating tumor DNA (ctDNA) using liquid biopsies offers clinically important benefits for monitoring cancer progression. A single ctDNA sample represents a mixture of shed tumor DNA from all known and unknown lesions within a patient. Although shedding levels have been suggested to hold the key to identifying targetable lesions and uncovering treatment resistance mechanisms, the amount of DNA shed by any one specific lesion is still not well characterized. We designed the Lesion Shedding Model (LSM) to order lesions from the strongest to the poorest shedding for a given patient. By characterizing the lesion-specific ctDNA shedding levels, we can better understand the mechanisms of shedding and more accurately interpret ctDNA assays to improve their clinical impact. We verified the accuracy of the LSM under controlled conditions using a simulation approach as well as testing the model on three cancer patients. The LSM obtained an accurate partial order of the lesions according to their assigned shedding levels in simulations and its accuracy in identifying the top shedding lesion was not significantly impacted by number of lesions. Applying LSM to three cancer patients, we found that indeed there were lesions that consistently shed more than others into the patients' blood. In two of the patients, the top shedding lesion was one of the only clinically progressing lesions at the time of biopsy suggesting a connection between high ctDNA shedding and clinical progression. The LSM provides a much needed framework with which to understand ctDNA shedding and to accelerate discovery of ctDNA biomarkers. The LSM source code has been available in the IBM BioMedSciAI Github (https://github.com/BiomedSciAI/Geno4SD).


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Neoplasias/tratamento farmacológico , DNA de Neoplasias/genética , DNA Tumoral Circulante/genética , Biópsia , Mutação
2.
Bioinformatics ; 40(Supplement_1): i199-i207, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940159

RESUMO

MOTIVATION: The emergence of COVID-19 (C19) created incredible worldwide challenges but offers unique opportunities to understand the physiology of its risk factors and their interactions with complex disease conditions, such as metabolic syndrome. To address the challenges of discovering clinically relevant interactions, we employed a unique approach for epidemiological analysis powered by redescription-based topological data analysis (RTDA). RESULTS: Here, RTDA was applied to Explorys data to discover associations among severe C19 and metabolic syndrome. This approach was able to further explore the probative value of drug prescriptions to capture the involvement of RAAS and hypertension with C19, as well as modification of risk factor impact by hyperlipidemia (HL) on severe C19. RTDA found higher-order relationships between RAAS pathway and severe C19 along with demographic variables of age, gender, and comorbidities such as obesity, statin prescriptions, HL, chronic kidney failure, and disproportionately affecting Black individuals. RTDA combined with CuNA (cumulant-based network analysis) yielded a higher-order interaction network derived from cumulants that furthered supported the central role that RAAS plays. TDA techniques can provide a novel outlook beyond typical logistic regressions in epidemiology. From an observational cohort of electronic medical records, it can find out how RAAS drugs interact with comorbidities, such as hypertension and HL, of patients with severe bouts of C19. Where single variable association tests with outcome can struggle, TDA's higher-order interaction network between different variables enables the discovery of the comorbidities of a disease such as C19 work in concert. AVAILABILITY AND IMPLEMENTATION: Code for performing TDA/RTDA is available in https://github.com/IBM/Matilda and code for CuNA can be found in https://github.com/BiomedSciAI/Geno4SD/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Hiperlipidemias , Síndrome Metabólica , Sistema Renina-Angiotensina , SARS-CoV-2 , Humanos , Síndrome Metabólica/epidemiologia , COVID-19/epidemiologia , Hiperlipidemias/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Comorbidade , Hipertensão/epidemiologia , Fatores de Risco
3.
Blood ; 142(5): 421-433, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37146250

RESUMO

Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point. We found the previously described acquired BCL2-G101V mutation in only 4 of 11 patients, with 2 patients showing a very low variant allele fraction (0.03%-4.68%). Whole-exome sequencing revealed acquired loss(8p) in 4 of 11 patients, of which 2 patients also had gain (1q21.2-21.3) in the same cells affecting the MCL1 gene. In vitro experiments showed that CLL cells from the 4 patients with loss(8p) were more resistant to venetoclax than cells from those without it, with the cells from 2 patients also carrying gain (1q21.2-21.3) showing increased sensitivity to MCL1 inhibition. Progression samples with gain (1q21.2-21.3) were more susceptible to the combination of MCL1 inhibitor and venetoclax. Differential gene expression analysis comparing bulk RNA sequencing data from pretreatment and progression time points of all patients showed upregulation of proliferation, B-cell receptor (BCR), and NF-κB gene sets including MAPK genes. Cells from progression time points demonstrated upregulation of surface immunoglobulin M and higher pERK levels compared with those from the preprogression time point, suggesting an upregulation of BCR signaling that activates the MAPK pathway. Overall, our data suggest several mechanisms of acquired resistance to venetoclax in CLL that could pave the way for rationally designed combination treatments for patients with venetoclax-resistant CLL.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Sequenciamento do Exoma , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2
4.
BMC Genomics ; 22(Suppl 5): 518, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34789161

RESUMO

BACKGROUND: All diseases containing genetic material undergo genetic evolution and give rise to heterogeneity including cancer and infection. Although these illnesses are biologically very different, the ability for phylogenetic retrodiction based on the genomic reads is common between them and thus tree-based principles and assumptions are shared. Just as the different frequencies of tumor genomic variants presupposes the existence of multiple tumor clones and provides a handle to computationally infer them, we postulate that the different variant frequencies in viral reads offers the means to infer multiple co-infecting sublineages. RESULTS: We present a common methodological framework to infer the phylogenomics from genomic data, be it reads of SARS-CoV-2 of multiple COVID-19 patients or bulk DNAseq of the tumor of a cancer patient. We describe the Concerti computational framework for inferring phylogenies in each of the two scenarios.To demonstrate the accuracy of the method, we reproduce some known results in both scenarios. We also make some additional discoveries. CONCLUSIONS: Concerti successfully extracts and integrates information from multi-point samples, enabling the discovery of clinically plausible phylogenetic trees that capture the heterogeneity known to exist both spatially and temporally. These models can have direct therapeutic implications by highlighting "birth" of clones that may harbor resistance mechanisms to treatment, "death" of subclones with drug targets, and acquisition of functionally pertinent mutations in clones that may have seemed clinically irrelevant. Specifically in this paper we uncover new potential parallel mutations in the evolution of the SARS-CoV-2 virus. In the context of cancer, we identify new clones harboring resistant mutations to therapy.


Assuntos
COVID-19 , Neoplasias , Células Clonais , Humanos , Mutação , Neoplasias/genética , Filogenia , SARS-CoV-2
5.
PLoS Comput Biol ; 15(8): e1007332, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469830

RESUMO

The confluence of deep sequencing and powerful machine learning is providing an unprecedented peek at the darkest of the dark genomic matter, the non-coding genomic regions lacking any functional annotation. While deep sequencing uncovers rare tumor variants, the heterogeneity of the disease confounds the best of machine learning (ML) algorithms. Here we set out to answer if the dark-matter of the genome encompass signals that can distinguish the fine subtypes of disease that are otherwise genomically indistinguishable. We introduce a novel stochastic regularization, ReVeaL, that empowers ML to discriminate subtle cancer subtypes even from the same 'cell of origin'. Analogous to heritability, implicitly defined on whole genome, we use predictability (F1 score) definable on portions of the genome. In an effort to distinguish cancer subtypes using dark-matter DNA, we applied ReVeaL to a new WGS dataset from 727 patient samples with seven forms of hematological cancers and assessed the predictivity over several genomic regions including genic, non-dark, non-coding, non-genic, and dark. ReVeaL enabled improved discrimination of cancer subtypes for all segments of the genome. The non-genic, non-coding and dark-matter had the highest F1 scores, with dark-matter having the highest level of predictability. Based on ReVeaL's predictability of different genomic regions, dark-matter contains enough signal to significantly discriminate fine subtypes of disease. Hence, the agglomeration of rare variants, even in the hitherto unannotated and ill-understood regions of the genome, may play a substantial role in the disease etiology and deserve much more attention.


Assuntos
Algoritmos , DNA de Neoplasias/genética , Neoplasias Hematológicas/classificação , Neoplasias Hematológicas/genética , Modelos Genéticos , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Frequência do Gene , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único , RNA não Traduzido/genética , Processos Estocásticos , Sequenciamento Completo do Genoma
7.
Breast J ; 19(1): 31-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23252505

RESUMO

Nipple-sparing mastectomy (NSM) as a therapeutic or prophylactic procedure for breast cancer is rapidly gaining popularity as the literature continues to support it safety. The lateral inframammary fold (IMF) approach provides adequate exposure and eliminates visible scars on the anterior surface of the breast, making this incision cosmetically superior to radial or periareolar approaches. We reviewed 55 consecutive NSMs performed through a lateral IMF incision with immediate implant-based reconstruction, with or without tissue expansion, between June 2008 and June 2011. Prior to incision, breasts were lightly infiltrated with dilute anesthetic solution with epinephrine. Sharp dissection, rather than electrocautery, was used as much as possible to minimize thermal injury to the mastectomy flap. When indicated, acellular dermal matrix was placed as an inferolateral sling. Subsequent fat grafting to correct contour deformities was performed in select patients. Three-dimensional (3D) photographs assessed changes in volume, antero-posterior projection, and ptosis. Mean patient age was 46 years, and mean follow-up time was 12 months. Twelve mastectomies (22%) were therapeutic, and the remaining 43 (78%) were prophylactic. Seven of the nine sentinel lymph node biopsies (including one axillary dissection) (78%) were performed through the lateral IMF incision without the need for a counter-incision. Acellular dermal matrix was used in 34 (62%) breasts. Average permanent implant volume was 416 cc (range 176-750 cc), and average fat grafting volume was 86 cc (range 10-177 cc). In one patient a positive intraoperative subareolar biopsy necessitated resection of the nipple-areola complex (NAC), and in two other patients NAC resection was performed at a subsequent procedure based on the final pathology report. Mastectomy flap necrosis, requiring operative debridement, occurred in two breasts (4%), both in the same patient. One of these breasts required a salvage latissimus dorsi myocutaneous flap to complete the reconstruction. Three nipples (6%) required office debridement for partial necrosis and operative reconstruction later. No patient had complete nipple necrosis. No statistically significant differences existed between therapeutic and prophylactic mastectomies for developing partial skin and/or nipple necrosis (p = 0.35). Three episodes (5%) of cellulitis occurred, which responded to antibiotics without the need for explantation. Morphological outcomes using 3D scan measurements showed reconstructed breasts were larger, more projected, and less ptotic than the preoperative breasts (196 versus 248 cc, 80 versus 90 mm, 146 versus 134 mm, p < 0.01 for each parameter). Excellent results can be achieved with immediate implant-based reconstruction of NSM through a lateral IMF incision. NAC survival is reliable, and complication rates are low.


Assuntos
Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/cirurgia , Mamoplastia/métodos , Mastectomia Subcutânea/métodos , Mamilos/cirurgia , Retalhos Cirúrgicos , Derme Acelular , Tecido Adiposo/transplante , Adulto , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/prevenção & controle , Celulite (Flegmão)/etiologia , Desbridamento , Dissecação , Feminino , Humanos , Mamoplastia/efeitos adversos , Mastectomia Subcutânea/efeitos adversos , Pessoa de Meia-Idade , Necrose/etiologia , Necrose/cirurgia , Mamilos/patologia , Tratamentos com Preservação do Órgão , Estudos Retrospectivos , Biópsia de Linfonodo Sentinela , Retalhos Cirúrgicos/efeitos adversos , Retalhos Cirúrgicos/patologia , Retalhos Cirúrgicos/cirurgia , Fatores de Tempo , Resultado do Tratamento
8.
Blood Adv ; 7(9): 1929-1943, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36287227

RESUMO

Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the development of resistance. The most common resistance mechanism in patients whose disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective, noncovalent BTKi with substantial clinical activity in patients whose disease has progressed on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4 chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate that primary CLL cells from responding patients on the pirtobrutinib trial show reduced BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression, these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition, cell viability, and cytokine production. We employed longitudinal whole-exome sequencing on 2 patients whose disease progressed on pirtobrutinib and identified selection of alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations lead to resistance to noncovalent BTKis.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Tirosina Quinase da Agamaglobulinemia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Quimiocina CCL4/genética , Quimiocina CCL4/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Mutação
9.
medRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808694

RESUMO

While the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple primary tumors in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. We identified ten patients with early-stage, resectable non-small cell lung cancer who presented with multiple anatomically distinct EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole exome sequencing (WES) and hypermutable poly-guanine (poly-G) repeat genotyping, as orthogonal methods for lineage tracing. In two patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. In four other patients, developmental mosaicism is supported by the poly-G lineage tracing and WES, indicating a common non-germline cell-of-origin. Thus, developmental mosaicism and germline variants define two distinct mechanisms of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for understanding their etiology and clinical management.

10.
Nat Med ; 29(1): 158-169, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624313

RESUMO

Richter syndrome (RS) arising from chronic lymphocytic leukemia (CLL) exemplifies an aggressive malignancy that develops from an indolent neoplasm. To decipher the genetics underlying this transformation, we computationally deconvoluted admixtures of CLL and RS cells from 52 patients with RS, evaluating paired CLL-RS whole-exome sequencing data. We discovered RS-specific somatic driver mutations (including IRF2BP2, SRSF1, B2M, DNMT3A and CCND3), recurrent copy-number alterations beyond del(9p21)(CDKN2A/B), whole-genome duplication and chromothripsis, which were confirmed in 45 independent RS cases and in an external set of RS whole genomes. Through unsupervised clustering, clonally related RS was largely distinct from diffuse large B cell lymphoma. We distinguished pathways that were dysregulated in RS versus CLL, and detected clonal evolution of transformation at single-cell resolution, identifying intermediate cell states. Our study defines distinct molecular subtypes of RS and highlights cell-free DNA analysis as a potential tool for early diagnosis and monitoring.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Fatores de Processamento de Serina-Arginina
11.
Nat Commun ; 13(1): 898, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197475

RESUMO

Acral melanoma, the most common melanoma subtype among non-White individuals, is associated with poor prognosis. However, its key molecular drivers remain obscure. Here, we perform integrative genomic and clinical profiling of acral melanomas from 104 patients treated in North America (n = 37) or China (n = 67). We find that recurrent, late-arising focal amplifications of cytoband 22q11.21 are a leading determinant of inferior survival, strongly associated with metastasis, and linked to downregulation of immunomodulatory genes associated with response to immune checkpoint blockade. Unexpectedly, LZTR1 - a known tumor suppressor in other cancers - is a key candidate oncogene in this cytoband. Silencing of LZTR1 in melanoma cell lines causes apoptotic cell death independent of major hotspot mutations or melanoma subtypes. Conversely, overexpression of LZTR1 in normal human melanocytes initiates processes associated with metastasis, including anchorage-independent growth, formation of spheroids, and an increase in MAPK and SRC activities. Our results provide insights into the etiology of acral melanoma and implicate LZTR1 as a key tumor promoter and therapeutic target.


Assuntos
Melanoma , Neoplasias Cutâneas , Genômica , Humanos , Melanoma/patologia , Oncogenes , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Melanoma Maligno Cutâneo
12.
Nat Med ; 28(9): 1848-1859, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097221

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment; however, failure mechanisms are identified in only a fraction of cases. To gain new insights into the basis of clinical response, we performed single-cell transcriptome sequencing of 105 pretreatment and post-treatment peripheral blood mononuclear cell samples, and infusion products collected from 32 individuals with large B cell lymphoma treated with either of two CD19 CAR-T products: axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel). Expansion of proliferative memory-like CD8 clones was a hallmark of tisa-cel response, whereas axi-cel responders displayed more heterogeneous populations. Elevations in CAR-T regulatory cells among nonresponders to axi-cel were detected, and these populations were capable of suppressing conventional CAR-T cell expansion and driving late relapses in an in vivo model. Our analyses reveal the temporal dynamics of effective responses to CAR-T therapy, the distinct molecular phenotypes of CAR-T cells with differing designs, and the capacity for even small increases in CAR-T regulatory cells to drive relapse.


Assuntos
Produtos Biológicos , Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva/efeitos adversos , Leucócitos Mononucleares , Linfoma Difuso de Grandes Células B/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores de Antígenos Quiméricos/genética
13.
Cancer Discov ; 11(10): 2436-2445, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34404686

RESUMO

Sacituzumab govitecan (SG), the first antibody-drug conjugate (ADC) approved for triple-negative breast cancer, incorporates the anti-TROP2 antibody hRS7 conjugated to a topoisomerase-1 (TOP1) inhibitor payload. We sought to identify mechanisms of SG resistance through RNA and whole-exome sequencing of pretreatment and postprogression specimens. One patient exhibiting de novo progression lacked TROP2 expression, in contrast to robust TROP2 expression and focal genomic amplification of TACSTD2/TROP2 observed in a patient with a deep, prolonged response to SG. Analysis of acquired genomic resistance in this case revealed one phylogenetic branch harboring a canonical TOP1 E418K resistance mutation and subsequent frameshift TOP1 mutation, whereas a distinct branch exhibited a novel TACSTD2/TROP2 T256R missense mutation. Reconstitution experiments demonstrated that TROP2T256R confers SG resistance via defective plasma membrane localization and reduced cell-surface binding by hRS7. These findings highlight parallel genomic alterations in both antibody and payload targets associated with resistance to SG. SIGNIFICANCE: These findings underscore TROP2 as a response determinant and reveal acquired SG resistance mechanisms involving the direct antibody and drug payload targets in distinct metastatic subclones of an individual patient. This study highlights the specificity of SG and illustrates how such mechanisms will inform therapeutic strategies to overcome ADC resistance.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Camptotecina/análogos & derivados , Imunoconjugados/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antígenos de Neoplasias/genética , Camptotecina/uso terapêutico , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Feminino , Genômica , Humanos , Neoplasias de Mama Triplo Negativas/genética
14.
BMC Bioinformatics ; 11: 506, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20939882

RESUMO

BACKGROUND: Datasets generated on deep-sequencing platforms have been deposited in various public repositories such as the Gene Expression Omnibus (GEO), Sequence Read Archive (SRA) hosted by the NCBI, or the DNA Data Bank of Japan (ddbj). Despite being rich data sources, they have not been used much due to the difficulty in locating and analyzing datasets of interest. RESULTS: Geoseq http://geoseq.mssm.edu provides a new method of analyzing short reads from deep sequencing experiments. Instead of mapping the reads to reference genomes or sequences, Geoseq maps a reference sequence against the sequencing data. It is web-based, and holds pre-computed data from public libraries. The analysis reduces the input sequence to tiles and measures the coverage of each tile in a sequence library through the use of suffix arrays. The user can upload custom target sequences or use gene/miRNA names for the search and get back results as plots and spreadsheet files. Geoseq organizes the public sequencing data using a controlled vocabulary, allowing identification of relevant libraries by organism, tissue and type of experiment. CONCLUSIONS: Analysis of small sets of sequences against deep-sequencing datasets, as well as identification of public datasets of interest, is simplified by Geoseq. We applied Geoseq to, a) identify differential isoform expression in mRNA-seq datasets, b) identify miRNAs (microRNAs) in libraries, and identify mature and star sequences in miRNAS and c) to identify potentially mis-annotated miRNAs. The ease of using Geoseq for these analyses suggests its utility and uniqueness as an analysis tool.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Sequência de Bases , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , MicroRNAs/química , MicroRNAs/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA
16.
Nat Med ; 25(9): 1415-1421, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501609

RESUMO

During cancer therapy, tumor heterogeneity can drive the evolution of multiple tumor subclones harboring unique resistance mechanisms in an individual patient1-3. Previous case reports and small case series have suggested that liquid biopsy (specifically, cell-free DNA (cfDNA)) may better capture the heterogeneity of acquired resistance4-8. However, the effectiveness of cfDNA versus standard single-lesion tumor biopsies has not been directly compared in larger-scale prospective cohorts of patients following progression on targeted therapy. Here, in a prospective cohort of 42 patients with molecularly defined gastrointestinal cancers and acquired resistance to targeted therapy, direct comparison of postprogression cfDNA versus tumor biopsy revealed that cfDNA more frequently identified clinically relevant resistance alterations and multiple resistance mechanisms, detecting resistance alterations not found in the matched tumor biopsy in 78% of cases. Whole-exome sequencing of serial cfDNA, tumor biopsies and rapid autopsy specimens elucidated substantial geographic and evolutionary differences across lesions. Our data suggest that acquired resistance is frequently characterized by profound tumor heterogeneity, and that the emergence of multiple resistance alterations in an individual patient may represent the 'rule' rather than the 'exception'. These findings have profound therapeutic implications and highlight the potential advantages of cfDNA over tissue biopsy in the setting of acquired resistance.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA de Neoplasias/sangue , Neoplasias Gastrointestinais/sangue , Biópsia Líquida , Autopsia , Ácidos Nucleicos Livres/genética , Estudos de Coortes , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Sequenciamento do Exoma
18.
BMC Bioinformatics ; 5: 181, 2004 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-15555081

RESUMO

BACKGROUND: Recent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them. RESULTS: We present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional) "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model. CONCLUSIONS: Our method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Redes Neurais de Computação , Animais , Caenorhabditis elegans/fisiologia , Escherichia coli K12/genética , Modelos Genéticos , Modelos Neurológicos , Rede Nervosa/fisiologia , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Cancer Res ; 74(23): 6833-44, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25273091

RESUMO

Only a minority of those exposed to human papillomavirus (HPV) develop HPV-related cervical and oropharyngeal cancer. Because host immunity affects infection and progression to cancer, we tested the hypothesis that genetic variation in immune-related genes is a determinant of susceptibility to oropharyngeal cancer and other HPV-associated cancers by performing a multitier integrative computational analysis with oropharyngeal cancer data from a head and neck cancer genome-wide association study (GWAS). Independent analyses, including single-gene, gene-interconnectivity, protein-protein interaction, gene expression, and pathway analysis, identified immune genes and pathways significantly associated with oropharyngeal cancer. TGFßR1, which intersected all tiers of analysis and thus selected for validation, replicated significantly in the head and neck cancer GWAS limited to HPV-seropositive cases and an independent cervical cancer GWAS. The TGFßR1 containing p38-MAPK pathway was significantly associated with oropharyngeal cancer and cervical cancer, and TGFßR1 was overexpressed in oropharyngeal cancer, cervical cancer, and HPV(+) head and neck cancer tumors. These concordant analyses implicate TGFßR1 signaling as a process dysregulated across HPV-related cancers. This study demonstrates that genetic variation in immune-related genes is associated with susceptibility to oropharyngeal cancer and implicates TGFßR1/TGFß signaling in the development of both oropharyngeal cancer and cervical cancer. Better understanding of the immunogenetic basis of susceptibility to HPV-associated cancers may provide insight into host/virus interactions and immune processes dysregulated in the minority of HPV-exposed individuals who progress to cancer.


Assuntos
Neoplasias/genética , Neoplasias/virologia , Infecções por Papillomavirus/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Interações Hospedeiro-Patógeno/genética , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias/imunologia , Papillomaviridae , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Fator de Crescimento Transformador beta/genética , Proteínas Quinases p38 Ativadas por Mitógeno
20.
Plast Reconstr Surg ; 131(2): 185-191, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23076412

RESUMO

BACKGROUND: Fat grafting has emerged as a useful method for breast contouring in aesthetic and reconstructive patients. Advancements have been made in fat graft harvest and delivery, but the ability to judge the overall success of fat grafting remains limited. The authors applied three-dimensional imaging technology to assess volumetric fat graft survival following autologous fat transfer to the breast. METHODS: Fat grafting surgery was performed using a modified Coleman technique in breast reconstruction. Patients undergoing the procedure were entered into the study prospectively and followed. Three-dimensional imaging was performed using the Canfield Vectra system and analyzed using Geomagic software. Breasts were isolated as closed objects, and total breast volume was calculated on every scan. RESULTS: The data stratified patients into three groups with statistically significant parameters based on the volume of fat injected. The largest injected group (average volume, 151 cc) retained a volume of 86.9 percent (7 days postoperatively), 81.1 percent (16 days), 57.5 percent (49 days), and 52.3 percent (140 days). The smallest group (average, 51 cc) retained a volume of 87.9 percent (7 days postoperatively), 75.8 percent (16 days), 56.6 percent (49 days), and 27.1 percent (140 days). The intermediate group (average, 93 cc) retained 90.3 percent (7 days postoperatively), 74 percent (16 days), 45.7 percent (49 days), and 38.1 percent (140 days). Of note, irradiation or prior breast procedure type did not seem to affect the volume retention rate. CONCLUSIONS: The authors' data suggest that fat retention is volume and time dependent. Patients receiving higher volumes of injected fat had slower volume loss and greater total volume retention.


Assuntos
Tecido Adiposo/transplante , Sobrevivência de Enxerto , Mamoplastia/métodos , Feminino , Humanos , Imageamento Tridimensional , Pessoa de Meia-Idade , Tamanho do Órgão , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA