Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 241(4): 861-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25522795

RESUMO

MAIN CONCLUSION: Successful molecular cloning and functional characterization of a high-affinity urea permease ZmDUR3 provide convincing evidence of ZmDUR3 roles in root urea acquisition and internal urea-N-remobilization of maize plants. Urea occurs ubiquitously in both soils and plants. Being a major form of nitrogen fertilizer, large applications of urea assist cereals in approaching their genetic yield potential, but due to the low nitrogen-use efficiency of crops, this practice poses a severe threat to the environment through their hypertrophication. To date, except for paddy rice, little is known about the biological basis for urea movement in dryland crops. Here, we report the molecular and physiological characterization of a maize urea transporter, ZmDUR3. We show using gene prediction, PCR-based cloning and yeast complementation, that a functional full-length cDNA encoding a 731 amino acids-containing protein with putative 15 transmembrane α-helixes for ZmDUR3 was successfully cloned. Root-influx studies using (15)N-urea demonstrated ZmDUR3 catalyzes urea transport with a K m at ~9 µM when expressed in the Arabidopsis dur3-mutant. qPCR analysis revealed that ZmDUR3 mRNA in roots was significantly upregulated by nitrogen depletion and repressed by reprovision of nitrogen after nitrogen starvation, indicating that ZmDUR3 is a nitrogen-responsive gene and relevant to plant nitrogen nutrition. Moreover, detection of higher urea levels in senescent leaves and obvious occurrence of ZmDUR3 transcripts in phloem-cells of mature/aged leaves strongly implies a role for ZmDUR3 in urea vascular loading. Significantly, expression of ZmDUR3 complemented atdur3-mutant of Arabidopsis, improving plant growth on low urea and increasing urea acquisition. As it also targets to the plasma membrane, our data suggest that ZmDUR3 functions as an active urea permease playing physiological roles in effective urea uptake and nitrogen remobilization in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Ureia/metabolismo , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Fertilizantes , Expressão Gênica , Genes Reporter , Proteínas de Membrana Transportadoras/genética , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Zea mays/metabolismo , Transportadores de Ureia
2.
Front Plant Sci ; 9: 210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563921

RESUMO

Although many members encoding different ammonium- and nitrate-transporters (AMTs, NRTs) were identified and functionally characterized from several plant species, little is known about molecular components for [Formula: see text]- and [Formula: see text] acquisition/transport in tobacco, which is often used as a plant model for biological studies besides its agricultural and industrial interest. We reported here the first molecular identification in tobacco (Nicotiana tabacum) of nine AMTs and four NRTs, which are respectively divided into four (AMT1/2/3/4) and two (NRT1/2) clusters and whose functionalities were preliminarily evidenced by heterologous functional-complementation in yeast or Arabidopsis. Tissue-specific transcriptional profiling by qPCR revealed that NtAMT1.1/NRT1.1 mRNA occurred widely in leaves, flower organs and roots; only NtAMT1.1/1.3/2.1NRT1.2/2.2 were strongly transcribed in the aged leaves, implying their dominant roles in N-remobilization from source/senescent tissues. N-dependent expression analysis showed a marked upregulation of NtAMT1.1 in the roots by N-starvation and resupply with N including [Formula: see text], suggesting a predominant action of NtAMT1.1 in [Formula: see text] uptake/transport whenever required. The obvious leaf-expression of other NtAMTs e.g., AMT1.2 responsive to N indicates a major place, where they may play transport roles associated with plant N-status and ([Formula: see text]-)N movement within aerial-parts. The preferentially root-specific transcription of NtNRT1.1/1.2/2.1 responsive to N argues their importance for root [Formula: see text] uptake and even sensing in root systems. Moreover, of all NtAMTs/NRTs, only NtAMT1.1/NRT1.1/1.2 showed their root-expression alteration in a typical diurnal-oscillation pattern, reflecting likely their significant roles in root N-acquisition regulated by internal N-demand influenced by diurnal-dependent assimilation and translocation of carbohydrates from shoots. This suggestion could be supported at least in part by sucrose- and MSX-affected transcriptional-regulation of NtNRT1.1/1.2. Thus, present data provide valuable molecular bases for the existence of AMTs/NRTs in tobacco, promoting a deeper understanding of their biological functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA