Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 135(1): 222-260, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900855

RESUMO

Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.


Assuntos
Ácido Araquidônico , Doenças Cardiovasculares , Humanos , Ácido Araquidônico/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Transdução de Sinais , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Fatores de Risco Cardiometabólico , Obesidade/metabolismo , Obesidade/terapia
2.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205640

RESUMO

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Assuntos
Lesão Pulmonar Aguda , Antígeno de Macrófago 1 , Animais , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Adesão Celular , Dissulfetos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Compostos de Sulfidrila/metabolismo
3.
Nano Lett ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511842

RESUMO

Methane oxidation using molecular oxygen remains a grand challenge in which the obstacle is not only the activation of methane but also the reaction with oxygen, considering the mismatch of the ground spin states. Herein, we report TiO2-supported Pt nanocrystals (Pt/TiO2) with surface Pt-Ti alloyed layers that directly convert methane into oxygenates by using O2 as the oxidant with the assistance of CO. The oxygenate yield reached 749.8 mmol gPt-1 in a H2O aqueous solution over 0.1% Pt/TiO2 under 31 bar of mixed gas (20:5:6 CH4:CO:O2) at 150 °C for 3 h, while the CH3OH selectivity was 62.3%. On the basis of the control experiments and spectroscopic results, we identified the surface Pt-Ti alloy as the active sites. Moreover, CO promoted the dissociation of O2 on the surface of Pt-Ti alloyed layers and the subsequent activation of CH4 to form oxygenated products.

4.
Nano Lett ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837959

RESUMO

Propane dehydrogenation (PDH) serves as a pivotal intentional technique to produce propylene. The stability of PDH catalysts is generally restricted by the readsorption of propylene which can subsequently undergo side reactions for coke formation. Herein, we demonstrate an ultrastable PDH catalyst by encapsulating PtIn clusters within silicalite-1 which serves as an efficient promoter for olefin desorption. The mean lifetime of PtIn@S-1 (S-1, silicalite-1) was calculated as 37317 h with high propylene selectivity of >97% at 580 °C with a weight hourly space velocity (WHSV) of 4.7 h-1. With an ultrahigh WHSV of 1128 h-1, which pushed the catalyst away from the equilibrium conversion to 13.3%, PtIn@S-1 substantially outperformed other reported PDH catalysts in terms of mean lifetime (32058 h), reaction rates (3.42 molpropylene gcat-1 h-1 and 341.90 molpropylene gPt-1 h-1), and total turnover number (14387.30 kgpropylene gcat-1). The developed catalyst is likely to lead the way to scalable PDH applications.

5.
J Lipid Res ; 65(3): 100513, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295985

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Cromatina/genética , Histona Desmetilases/genética , Inflamação/genética , Lipídeos
6.
New Phytol ; 243(3): 997-1016, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849319

RESUMO

Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Giberelinas , Malus , Oxilipinas , Proteínas de Plantas , Transdução de Sinais , Ubiquitinação , Oxilipinas/metabolismo , Malus/genética , Malus/metabolismo , Ciclopentanos/metabolismo , Ubiquitinação/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Giberelinas/metabolismo , Proteólise/efeitos dos fármacos , Antocianinas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Modelos Biológicos
7.
Cardiovasc Diabetol ; 23(1): 233, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965574

RESUMO

BACKGROUND: Artificial sweeteners are widely popular worldwide as substitutes for sugar or caloric sweeteners, but there are still several important unknowns and controversies regarding their associations with cardiovascular disease (CVD). We aimed to extensively assess the association and subgroup variability between artificial sweeteners and CVD and CVD mortality in the UK Biobank cohort, and further investigate the modification effects of genetic susceptibility and the mediation role of type 2 diabetes mellitus (T2DM). METHODS: This study included 133,285 participants in the UK Biobank who were free of CVD and diabetes at recruitment. Artificial sweetener intake was obtained from repeated 24-hour diet recalls. Cox proportional hazard models were used to estimate HRs. Genetic predisposition was estimated using the polygenic risk score (PRS). Furthermore, time-dependent mediation was performed. RESULTS: In our study, artificial sweetener intake (each teaspoon increase) was significantly associated with an increased risk of incident overall CVD (HR1.012, 95%CI: 1.008,1.017), coronary artery disease (CAD) (HR: 1.018, 95%CI: 1.001,1.035), peripheral arterial disease (PAD) (HR: 1.035, 95%CI: 1.010,1.061), and marginally significantly associated with heart failure (HF) risk (HR: 1.018, 95%CI: 0.999,1.038). In stratified analyses, non-whites were at greater risk of incident overall CVD from artificial sweetener. People with no obesity (BMI < 30 kg/m2) also tended to be at greater risk of incident CVD from artificial sweetener, although the obesity interaction is not significant. Meanwhile, the CVD risk associated with artificial sweeteners is independent of genetic susceptibility, and no significant interaction exists between genetic susceptibility and artificial sweeteners in terms of either additive or multiplicative effects. Furthermore, our study revealed that the relationship between artificial sweetener intake and overall CVD is significantly mediated, in large part, by prior T2DM (proportion of indirect effect: 70.0%). In specific CVD subtypes (CAD, PAD, and HF), the proportion of indirect effects ranges from 68.2 to 79.9%. CONCLUSIONS: Our findings suggest significant or marginally significant associations between artificial sweeteners and CVD and its subtypes (CAD, PAD, and HF). The associations are independent of genetic predisposition and are mediated primarily by T2DM. Therefore, the large-scale application of artificial sweeteners should be prudent, and the responses of individuals with different characteristics to artificial sweeteners should be better characterized to guide consumers' artificial sweeteners consumption behavior.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Adoçantes não Calóricos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/diagnóstico , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Fatores de Risco de Doenças Cardíacas , Incidência , Prognóstico , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Biobanco do Reino Unido , Reino Unido/epidemiologia , Adoçantes não Calóricos/efeitos adversos
8.
Anal Bioanal Chem ; 416(19): 4409-4415, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864917

RESUMO

We present a novel approach for iodide sensing based on the heavy-atom effect to quench the green fluorescent emission of organosilicon nanoparticles (OSiNPs). The fluorescence of OSiNPs was significantly quenched (up to 97.4% quenching efficiency) in the presence of iodide ions (I-) through oxidation by hydrogen peroxide. Therefore, OSiNPs can serve as a fluorescent probe to detect I- with high selectivity and sensitivity. The highly selective response is attributed to the hydrophilic surface enabling good dispersion in aqueous solutions and the lipophilic core allowing the generated liposoluble I2 to approach and quench the fluorescence of OSiNPs. The linear working range for I- was from 0 to 50 µM, with a detection limit of 0.1 µM. We successfully applied this nanosensor to determine iodine content in edible salt. Furthermore, the fluorescent OSiNPs can be utilized for the determination of total antioxidant capacity (TAC). Antioxidants reduce I2 to I-, and the extent of quenching by the remaining I2 on the OSiNPs indicates the TAC level. The responses to ascorbic acid, pyrogallic acid, and glutathione were investigated, and the detection limit for ascorbic acid was as low as 0.03 µM. It was applied to the determination of TAC in ascorbic acid tablets and fruit juices, indicating the potential application of the OSiNP-based I2 sensing technique in the field of food analysis.


Assuntos
Antioxidantes , Corantes Fluorescentes , Iodetos , Limite de Detecção , Nanopartículas , Iodetos/análise , Iodetos/química , Nanopartículas/química , Antioxidantes/análise , Antioxidantes/química , Corantes Fluorescentes/química , Compostos de Organossilício/química , Espectrometria de Fluorescência/métodos , Ácido Ascórbico/análise , Sucos de Frutas e Vegetais/análise
9.
Environ Res ; 252(Pt 3): 119011, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670213

RESUMO

It is predicted that oxygen minimum zones (OMZs) in the ocean will expand as a consequence of global warming and environmental pollution. This will affect the overall microbial ecology and microbial nitrogen cycle. As one of the world's largest alluvial estuaries, the Yangtze Estuary has exhibited a seasonal OMZ since the 1980s. In this study, we have uncovered the microbial composition, the patterns of community assembly and the potential for microbial nitrogen cycling within the water column of the Yangtze Estuary, with a particular focus on OMZ. Based on the 16 S rRNA gene sequencing, a specific spatial variation in the composition of prokaryotic communities was observed for each water layer, with the Proteobacteria (46.1%), Bacteroidetes (20.3%), and Cyanobacteria (10.3%) dominant. Stochastic and deterministic processes together shaped the community assembly in the water column. Further, pH was the most important environmental factor influencing prokaryotic composition in the surface water, followed by silicate, PO43-, and distance offshore (p < 0.05). Water depth, NH4+, and PO43- were the main factors in the bottom water (p < 0.05). At last, species analysis and marker gene annotation revealed candidate nitrogen cycling performers, and a rich array of nitrogen cycling potential in the bottom water of the Yangtze Estuary. The determined physiochemical parameters and potential for nitrogen respiration suggested that organic nitrogen and NO3- (or NO2-) are the preferred nitrogen sources for microorganisms in the Yangtze Estuary OMZ. These findings are expected to advance research on the ecological responses of estuarine oxygen minimum zones (OMZs) to future global climate perturbations.


Assuntos
Estuários , Nitrogênio , Oxigênio , China , Nitrogênio/metabolismo , Nitrogênio/análise , Oxigênio/metabolismo , Oxigênio/análise , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , RNA Ribossômico 16S , Ciclo do Nitrogênio
10.
Pharmacology ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810606

RESUMO

INTRODUCTION: Cisplatin (DDP) is the commonest chemo drug in lung adenocarcinoma (LUAD) treatment, and DDP resistance is a significant barrier to therapeutic therapy. This study attempted to elucidate the impact of PDK1 on DDP resistance in LUAD and its mechanism. METHODS: Bioinformatics analysis was used to determine the expression and enriched pathways of PDK1 in LUAD tissue. Subsequently, E2F8, the upstream transcription factor of PDK1 was predicted, and the binding relationship between the two was analyzed using dual-luciferase and ChIP experiments. PDK1 and E2F8 levels in LUAD tissues and cells were detected via qPCR. Cell viability, proliferation, and apoptosis levels were assayed by CCK-8, EdU, and flow cytometry experiments, respectively. Comet assay was used to assess DNA damage, and immunofluorescence was used to assess the expression of γ-H2AX. NHEJ reporter assay was to assess DNA repair efficiency. Western blot tested levels of DNA damage repair (DDR)-related proteins. Immunohistochemistry assessed the expression of relevant genes. Finally, an animal model was constructed to investigate the influence of PDK1 expression on LUAD growth. RESULTS: PDK1 was found to be upregulated in LUAD and enhanced DDP resistance by mediating DDR. E2F8 was identified as an upstream transcription factor of PDK1 and was highly expressed in LUAD. Rescue experiments presented that knocking down E2F8 could weaken the promotion of PDK1 overexpression on DDR-mediated DDP resistance in LUAD. In vivo experiments showed that knocking down PDK1 plus DDP significantly reduced the growth of xenograft tumors. CONCLUSION: Our results indicated that the E2F8/PDK1 axis mediated DDR to promote DDP resistance in LUAD. Our findings lead to an improved treatment strategy after drug resistance.

11.
J Appl Toxicol ; 44(9): 1446-1453, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797990

RESUMO

Voltage-dependent K+ (Kv) channels play an important role in restoring the membrane potential to its resting state, thereby maintaining vascular tone. In this study, native smooth muscle cells from rabbit coronary arteries were used to investigate the inhibitory effect of quetiapine, an atypical antipsychotic agent, on Kv channels. Quetiapine showed a concentration-dependent inhibition of Kv channels, with an IC50 of 47.98 ± 9.46 µM. Although quetiapine (50 µM) did not alter the steady-state activation curve, it caused a negative shift in the steady-state inactivation curve. The application of 1 and 2 Hz train steps in the presence of quetiapine significantly increased the inhibition of Kv current. Moreover, the recovery time constants from inactivation were prolonged in the presence of quetiapine, suggesting that its inhibitory action on Kv channels is use (state)-dependent. The inhibitory effects of quetiapine were not significantly affected by pretreatment with Kv1.5, Kv2.1, and Kv7 subtype inhibitors. Based on these findings, we conclude that quetiapine inhibits Kv channels in both a concentration- and use (state)-dependent manner. Given the physiological significance of Kv channels, caution is advised in the use of quetiapine as an antipsychotic due to its potential side effects on cardiovascular Kv channels.


Assuntos
Antipsicóticos , Vasos Coronários , Músculo Liso Vascular , Miócitos de Músculo Liso , Bloqueadores dos Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Fumarato de Quetiapina , Fumarato de Quetiapina/farmacologia , Animais , Coelhos , Antipsicóticos/farmacologia , Antipsicóticos/toxicidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Vasos Coronários/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Masculino , Relação Dose-Resposta a Droga , Potenciais da Membrana/efeitos dos fármacos , Células Cultivadas
12.
Chem Biodivers ; 21(8): e202400946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38869958

RESUMO

A new monoterpene, (-)-10-hydroxydihydroactinidiolide (1), along with two known monoterpenes, loliolide (2) and (+)-isololiolide (3), three known megastigmanes, 3α-hydroxy-5ß,6ß-epoxy-ß-ionone (4), 3α-hydroxy-5α,6α-epoxy-ß-ionone (5), and (+)-dehydrovomifoliol (6), a eudesmane-type sesquiterpene, 4α-hydroxy-4ß-methyldihydrocostol (7), a monoterpene, 8-hydroxycarvotanacetone (8), two flavonoids, chrysoeriol (9) and apigenin (10), and a phenylpropanoid, 3-(4-hydroxyphenyl)-1-propanol (11), were isolated from the whole plant of Achillea millefolium. The structure of compound 1 was identified according to spectroscopic data of HRMS and NMR, and its absolute configuration was assigned by 13C NMR calculations with DP4+ probability analyses and ECD calculations. The absolute configuration of compound 6 was determined by ECD calculations. Compounds 3, 6, 9 and 10 could dose-dependently inhibit the NO release in LPS-induced RAW264.7 cells.


Assuntos
Achillea , Anti-Inflamatórios , Achillea/química , Camundongos , Animais , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
13.
Angew Chem Int Ed Engl ; 63(23): e202404983, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563622

RESUMO

Syngas conversion serves as a gas-to-liquid technology to produce liquid fuels and valuable chemicals from coal, natural gas, or biomass. During syngas conversion, sintering is known to deactivate the catalyst owing to the loss of active surface area. However, the growth of nanoparticles might induce the formation of new active sites such as grain boundaries (GBs) which perform differently from the original nanoparticles. Herein, we reported a unique Cu-based catalyst, Cu nanoparticles with in situ generated GBs confined in zeolite Y (denoted as activated Cu/Y), which exhibited a high selectivity for C5+ hydrocarbons (65.3 C%) during syngas conversion. Such high selectivity for long-chain products distinguished activated Cu/Y from typical copper-based catalysts which mainly catalyze methanol synthesis. This unique performance was attributed to the GBs, while the zeolite assisted the stabilization through spatial confinement. Specifically, the GBs enabled H-assisted dissociation of CO and subsequent hydrogenation into CHx*. CHx* species not only serve as the initiator but also directly polymerize on Cu GBs, known as the carbide mechanism. Meanwhile, the synergy of GBs and their vicinal low-index facets led to the CO insertion where non-dissociative adsorbed CO on low-index facets migrated to GBs and inserted into the metal-alkyl bond for the chain growth.

14.
Angew Chem Int Ed Engl ; 63(24): e202404952, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588012

RESUMO

The vast bulk of polystyrene (PS), a major type of plastic polymers, ends up in landfills, which takes up to thousands of years to decompose in nature. Chemical recycling promises to enable lower-energy pathways and minimal environmental impacts compared with traditional incineration and mechanical recycling. Herein, we demonstrated that methanol as a hydrogen supplier assisted the depolymerization of PS (denoted as PS-MAD) into alkylbenzenes over a heterogeneous catalyst composed of Ru nanoparticles on SiO2. PS-MAD achieved a high yield of liquid products which accounted for 93.2 wt % of virgin PS at 280 °C for 6 h with the production rate of 118.1 mmolcarbon gcatal. -1 h-1. The major components were valuable alkylbenzenes (monocyclic aromatics and diphenyl alkanes), the sum of which occupied 84.3 wt % of liquid products. According to mechanistic studies, methanol decomposition dominates the hydrogen supply during PS-MAD, thereby restraining PS aromatization which generates by-products of fused polycyclic arenes and polyphenylenes.

15.
Rev Cardiovasc Med ; 24(6): 157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39077530

RESUMO

The increased burden of nonalcoholic fatty liver disease (NAFLD) parallels the increased incidence of overweight and metabolic syndrome worldwide. Because of the close relationship between metabolic disorders and fatty liver disease, a new term, metabolic-related fatty liver disease (MAFLD), was proposed by a group of experts to more precisely describe fatty liver disease resulting from metabolic disorders. According to the definitions, MAFLD and NAFLD populations have considerable discrepancies, but overlap does exist. This new definition has a nonnegligible impact on clinical practices, including diagnoses, interventions, and the risk of comorbidities. Emerging evidence has suggested that patients with MAFLD have more metabolic comorbidities and an increased risk of all-cause mortality, particularly cardiovascular mortality than patients with NAFLD. In this review, we systemically summarized and compared the risk and underlying mechanisms of cardiovascular disease (CVD) in patients with NAFLD or MAFLD.

17.
Sci Rep ; 14(1): 17778, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090272

RESUMO

This study used data from the National Health and Nutrition Examination Survey (NHANES) to investigate the relationship between the triglyceride-glucose (TyG) index and gallstones. We evaluated the data collected between 2017 to 2020. To evaluate the relationship between TyG index and gallstones, logistic regression analysis, basic characteristics of participants, subgroup analysis, and smooth curve fitting were utilized. The study included 3870 participants over the age of 20 years, 403 of whom reported gallstones, with a prevalence rate of 10.4%. After adjusting for all confounding factors, the risk of gallstones increased by 41% for each unit increase in the TyG index (OR 1.41, 95% CI 1.07, 1.86). The smooth curve fitting also showed a positive correlation between the TyG index and gallstones. Subgroup analysis revealed a significant positive relationship between the TyG index and the risk of gallstones in those aged < 50 years, women, individuals with total cholesterol levels > 200 mg/dL, individuals with body mass index (BMI) > 25, and individuals without diabetes. The risk of gallstones is positively correlated with a higher TyG index. Thus, the TyG index can be used as a predictor of the risk of gallstones.


Assuntos
Glicemia , Cálculos Biliares , Triglicerídeos , Humanos , Cálculos Biliares/sangue , Cálculos Biliares/epidemiologia , Cálculos Biliares/metabolismo , Triglicerídeos/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Transversais , Glicemia/análise , Glicemia/metabolismo , Adulto , Fatores de Risco , Inquéritos Nutricionais , Índice de Massa Corporal , Idoso , Prevalência
18.
Int J Biol Sci ; 20(1): 152-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164186

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) is a crucial innate defence mechanism against viral infection in the innate immune system, as it principally induces the production of type I interferons. Immune responses and metabolic control are inextricably linked, and chronic low-grade inflammation promotes the development of metabolic diseases. The cGAS-STING pathway activated by double-stranded DNA (dsDNA), cyclic dinucleotides (CDNs), endoplasmic reticulum stress (ER stress), mitochondrial stress, and energy imbalance in metabolic cells and immune cells triggers proinflammatory responses and metabolic disorders. Abnormal overactivation of the pathway is closely associated with metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), insulin resistance and cardiovascular diseases (CVDs). The interaction of cGAS-STING with other pathways, such as the nuclear factor-kappa B (NF-κB), Jun N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), autophagy, pyroptosis and insulin signalling pathways, is considered an important mechanism by which cGAS-STING regulates inflammation and metabolism. This review focuses on the link between immune responses related to the cGAS-STING pathway and metabolic diseases and cGAS-STING interaction with other pathways for mediating signal input and affecting output. Moreover, potential inhibitors of the cGAS-STING pathway and therapeutic prospects against metabolic diseases are discussed. This review provides a comprehensive perspective on the involvement of STING in immune-related metabolic diseases.


Assuntos
Interferon Tipo I , Doenças Metabólicas , Humanos , Transdução de Sinais/fisiologia , Nucleotidiltransferases/metabolismo , Inflamação , Imunidade Inata
19.
Artigo em Inglês | MEDLINE | ID: mdl-38967825

RESUMO

Trophinin-associated protein (TROAP), a cytoplasmic protein essential for spindle assembly and centrosome integrity during mitosis, has been reported to serve as an oncogene in various tumors. However, its role in endometrial cancer (EC) progression is still undefined. TROAP expression in EC was analyzed via GEPIA and HPA databases. The diagnostic and prognostic values of TROAP were examined by ROC curve analysis and Kaplan-Meier plotter, respectively. Cell proliferation was evaluated using CCK-8 and EdU incorporation assays. Apoptosis was assessed using TUNEL and flow cytometry assays. GSEA was performed to explore TROAP-related pathways in EC. Expression of TROAP, proliferating cell nuclear antigen (PCNA), Ki-67, cleaved-caspase-3 (cl-caspase-3), caspase-3, active ß-catenin, and total ß-catenin was detected using western blot analysis. TROAP was upregulated in EC. TROAP served as a potential diagnostic and prognostic marker in EC patients. TROAP silencing suppressed proliferation and enhanced apoptosis in EC cells. GSEA revealed that EC and Wnt signaling pathways were related to the expression of TROAP. We further demonstrated that TROAP knockout repressed the Wnt/ß-catenin pathway in EC cells. Moreover, SKL2001, a Wnt/ß-catenin activator, partially abrogated the effects of TROAP silencing on EC cell proliferation and apoptosis, while the signaling inhibitor XAV-939 had the opposite effect. In conclusion, TROAP knockout retarded proliferation and elicited apoptosis in EC cells by blocking the Wnt/ß-catenin pathway.

20.
Surg Laparosc Endosc Percutan Tech ; 34(2): 129-135, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38444073

RESUMO

OBJECTIVE: The purpose of this study is to evaluate the safety and efficacy of linaclotide and polyethylene glycol (PEG) electrolyte powder in patients with chronic constipation undergoing colonoscopy preparation. PATIENTS AND METHODS: We included 260 patients with chronic constipation who were scheduled to undergo a colonoscopy. They were equally divided into 4 groups using a random number table: 4L PEG, 3L PEG, 3L PEG+L, and 2L PEG+L. The 4 groups were compared based on their scores on the Boston Bowel Preparation Scale (BBPS) and Ottawa Bowel Preparation Quality Scale (OBPQS), adverse reactions during the bowel preparation procedure, colonoscope insertion time, colonoscope withdrawal time, detection rate of adenomas, and their willingness to repeat bowel preparation. RESULTS: In terms of the score of the right half of the colon, the score of the transverse colon, the total score using BBPS, and the total score using OBPQS, the 3L PEG (polyethylene glycol)+L group was superior to groups 3L PEG and 2L PEG+L ( P <0.05), but comparable to the 4L PEG group ( P >0.05). The incidence rate of vomiting was higher in the 4L PEG group than in the 2L PEG+L group ( P <0.05). There was no statistically significant difference in the insertion time of the colonoscope between the 4 groups. The colonoscope withdrawal time in the 3L PEG+L group was shorter than in groups 4L PEG and 3L PEG ( P <0.05) and comparable to that in the 4L PEG group ( P >0.05). There was no statistically significant difference in the rate of adenoma detection among the 4 groups ( P >0.05). The 4L PEG group was the least willing of the 4 groups to undergo repeated bowel preparation ( P <0.05). CONCLUSION: The 3L PEG+L is optimal among the 4 procedures. It can facilitate high-quality bowel preparation, reduce the incidence of nausea during the bowel preparation procedure, and encourage patients to undertake repeated bowel preparation.


Assuntos
Catárticos , Constipação Intestinal , Peptídeos , Humanos , Catárticos/efeitos adversos , Pós , Constipação Intestinal/diagnóstico , Constipação Intestinal/induzido quimicamente , Polietilenoglicóis , Colonoscopia/métodos , Eletrólitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA