Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Small ; 20(44): e2403292, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38958094

RESUMO

Antimony selenide (Sb2Se3) has sparked significant interest in high-efficiency photovoltaic applications due to its advantageous material and optoelectronic properties. In recent years, there has been considerable development in this area. Nonetheless, defects and suboptimal [hk0] crystal orientation expressively limit further device efficiency enhancement. This study used Zinc (Zn) to adjust the interfacial energy band and strengthen carrier transport. For the first time, it is discovered that the diffusion of Zn in the cadmium sulfide (CdS) buffer layer can affect the crystalline orientation of the Sb2Se3 thin films in the superstrate structure. The effect of Zn diffusion on the morphology of Sb2Se3 thin films with CdxZn1-xS buffer layer has been investigated in detail. Additionally, Zn doping promotes forming Sb2Se3 thin films with the desired [hk1] orientation, resulting in denser and larger grain sizes which will eventually regulate the defect density. Finally, based on the energy band structure and high-quality Sb2Se3 thin films, this study achieves a champion power conversion efficiency (PCE) of 8.76%, with a VOC of 458 mV, a JSC of 28.13 mA cm-2, and an FF of 67.85%. Overall, this study explores the growth mechanism of Sb2Se3 thin films, which can lead to further improvements in the efficiency of Sb2Se3 solar cells.

2.
Langmuir ; 39(35): 12412-12419, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37620278

RESUMO

The disordered transformation of the ordered aligned polar liquid crystal molecules in liquid crystal elastomers (LCEs) under the influence of an external field imbues them with the unique property of thermally reversible shape memory, making them highly valuable for various applications, particularly in actuators. In this study, we examined the high dielectric constant exhibited by the orientation polarization of polar liquid crystal molecules in RM257-LCE films, which holds significant potential for developing flexible capacitive sensors. By manipulating the flexibility of the molecular chain network and introducing hydrogen bonds and metal ions into the main chain, we were able to enhance the relative dielectric constant of LCEs to an impressive value of 62 (at 100 Hz), which is approximately 23 times higher than for polydimethylsiloxane (PDMS). This elevated dielectric constant displays a noteworthy positive temperature coefficient within a specific temperature range, starting from room temperature and extending to the clearing point. Using this property, we fabricated highly sensitive capacitive, flexible temperature sensors. Moreover, we successfully engineered a flexible pressure sensor with an excellent pressure-sensing range of 0-2 MPa by combining the porous structure of the prepared LCEs with mushroom electrodes. Additionally, the sensor showcases a remarkable capacitance recovery time of 0.8 s at 90 °C. These outstanding features collectively contribute to the excellent pressure-sensing characteristics of our sensor. The findings of this study offer valuable insights and serve as a reference for the design of innovative flexible sensors, enabling advancements in sensor technology.

3.
Langmuir ; 38(23): 7190-7197, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35635021

RESUMO

Three-dimensional (3D) structural actuators based on monodomain liquid crystal elastomers (mLCEs) show a wide range of potential applications. A direct ink writing technique has been developed to print LCE structures. It is still a challenge to print high-precision 3D-mLCE actuators. Here, a method of wet 3D printing combined with freeze-drying is proposed. The coagulation bath is designed to restrain the nascent fiber disturbance of the capillary wave and weight by adjusting the ink viscosity and printing speed to control the LC molecular order, enabling uniform (B = 1.02) fibers with a high degree of orientational alignment (S = 0.45) of the mesogens. Furthermore, dynamic disulfide bond formation was used as the cross-linking point, which can allow the LCE network structure to be continuously cured to ensure adjacent layers are effectively bonded and, in combination with freeze-drying, produce the 3D-mLCE actuators of fidelity architecture (98.37 vol %) by printing. The actuators have excellent actuating strain (45.12%), and the dynamic disulfide bond makes them programmable. Finally, a printed bionic starfish and a printed bionic hand can easily grab regular and irregular objects. This work provides a feasible scheme for fabricating complex 3D-mLCEs with reversible changes in shape.

4.
Neural Netw ; 179: 106508, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39003982

RESUMO

Quantum Architecture Search (QAS) has shown significant promise in designing quantum circuits for Variational Quantum Algorithms (VQAs). However, existing QAS algorithms primarily explore circuit architectures within a discrete space, which is inherently inefficient. In this paper, we propose a Gradient-based Optimization for Quantum Architecture Search (GQAS), which leverages a circuit encoder, decoder, and predictor. Initially, the encoder embeds circuit architectures into a continuous latent representation. Subsequently, a predictor utilizes this continuous latent representation as input and outputs an estimated performance for the given architecture. The latent representation is then optimized through gradient descent within the continuous latent space based on the predicted performance. The optimized latent representation is finally mapped back to a discrete architecture via the decoder. To enhance the quality of the latent representation, we pre-train the encoder on a substantial dataset of circuit architectures using Self-Supervised Learning (SSL). Our simulation results on the Variational Quantum Eigensolver (VQE) indicate that our method outperforms the current Differentiable Quantum Architecture Search (DQAS).


Assuntos
Algoritmos , Redes Neurais de Computação , Teoria Quântica , Simulação por Computador , Aprendizado de Máquina Supervisionado
5.
Small Methods ; : e2400428, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741554

RESUMO

Efficiency reduction in perovskite solar cells (PSCs) during the magnification procedure significantly hampers commercialization. Vacuum-flash (VF) has emerged as a promising method to fabricate PSCs with consistent efficiency across scales. However, the slower solvent removal rate of VF compared to the anti-solvent method leads to perovskite films with buried defects. Thus, this work employs low-toxic Lewis base ligand solvent N-ethyl-2-pyrrolidone (NEP) to improve the nucleation process of perovskite films. NEP, with a mechanism similar to that of N-methyl-2-pyrrolidone in FA-based perovskite formation, enhances the solvent removal speed owing to its lower coordination ability. Based on this strategy, p-i-n PSCs with an optimized interface attain a power conversion efficiency (PCE) of 24.19% on an area of 0.08 cm2. The same nucleation process enables perovskite solar modules (PSMs) to achieve a certified PCE of 23.28% on an aperture area of 22.96 cm2, with a high geometric fill factor of 97%, ensuring nearly identical active area PCE (24%) in PSMs as in PSCs. This strategy highlights the potential of NEP as a ligand solvent choice for the commercialization of PSCs.

6.
ACS Appl Mater Interfaces ; 16(19): 24760-24770, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708525

RESUMO

Perovskite solar cells (PSCs) have shown great potential for reducing costs and improving power conversion efficiency (PCE). One effective method to achieve the latter is to use an all-inorganic charge transport layer (ICTL). However, traditional methods for crystallizing inorganic layers often result in the formation of a powder instead of a continuous film. To address this issue, we designed a dual-layer inorganic electron transport layer (IETL). This dual-layer structure consists of a layer of SnO2 nanocrystals (SnO2 NCs) deposited via a solution process and a dense SnO2 layer deposited through atomic layer deposition (ALD SnO2) to fill the cracks and gaps between the SnO2 NCs. PSCs having these dual-layer SnO2 ETLs achieved a high efficiency of 23.0%. This efficiency surpasses the recorded performance of ICTLs deposited on the perovskite. Furthermore, the PCE is comparable to that achieved with a C60 ETL. Moreover, the high-density structure of the ALD SnO2 layer inhibits the vertical migration of ions, resulting in improved thermal stability. After continuous heating at 85 °C in 10% humidity for 1000 h, the PCE of the dual-layer SnO2 structure decreased by 18%, whereas that of the C60/BCP structure decreased by 36%. The integration of dual-layer SnO2 into PSCs represents a significant advancement in achieving high-performance, commercially viable inverted monolithic PSCs or tandem solar cells.

7.
ACS Appl Mater Interfaces ; 16(29): 38017-38027, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991972

RESUMO

The vacuum flash solution method has gained widespread recognition in the preparation of perovskite thin films, laying the foundation for the industrialization of perovskite solar cells. However, the low volatility of dimethyl sulfoxide and its weak interaction with formamidine-based perovskites significantly hinder the preparation of cell modules and the further improvement of photovoltaic performance. In this study, we describe an efficient and reproducible method for preparing large-scale, highly uniform formamidinium lead triiodide (FAPbI3) perovskite films. This is achieved by accelerating the vacuum flash rate and leveraging the complex synergism. Specifically, we designed a dual pump system to accelerate the depressurization rate of the vacuum system and compared the quality of perovskite film formed at different depressurization rates. Further, to overcome the limitations posed by DMSO, we substituted N-methylpyrrolidone as the ligand solvent, creating a stable intermediate complex phase. After annealing, it can be transformed into a uniform and pinhole-free FAPbI3 film. Due to the superior quality of these films, the large area perovskite solar module achieved a power conversion efficiency of 22.7% with an active area of 21.4 cm2. Additionally, it obtained an official certified efficiency of 22.1% with an aperture area of 22 cm2, and it demonstrated long-term stability.

8.
Chem Asian J ; 19(10): e202400130, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38380867

RESUMO

The creation of hierarchical nanostructures can effectively strengthen phonon scattering to reduce lattice thermal conductivity for improving thermoelectric properties in inorganic solids. Here, we use Zn doping to induce a remarkable reduction in the lattice thermal conductivity in SnTe, approaching the theoretical minimum limit. Microstructure analysis reveals that ZnTe nanoprecipitates can embed within SnTe grains beyond the solubility limit of Zn in the Zn alloyed SnTe. These nanoprecipitates result in a substantial decrease of the lattice thermal conductivity in SnTe, leading to an ultralow lattice thermal conductivity of 0.50 W m-1 K-1 at 773 K and a peak ZT of ~0.48 at 773 K, marking an approximately 45 % enhancement compared to pristine SnTe. This study underscores the effectiveness of incorporating ZnTe nanoprecipitates in boosting the thermoelectric performance of SnTe-based materials.

9.
ACS Omega ; 8(48): 46182-46189, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075797

RESUMO

Low-thermal-conductivity materials are ideal candidates for high-performance thermoelectric materials. CsAg5Te3 is a new metal-rich chalcogenide with an inherent low-thermal conductivity. However, due to its complex crystal structure, obtaining high-purity CsAg5Te3 poses a serious challenge. In addition, the high price of pure metals Cs, Ag, and Te leads to the high cost of traditional solid-state methods for preparing CsAg5Te3. To address these issues, the preparation of CsAg5Te3 with a nanostructured fiber morphology was carried out using a low-energy-intensity scalable microwave method. The CsAg5Te3 nanofibers were then assembled using spark plasma sintering technology to prepare CsAg5Te3 bulk with a layered structure. The lattice thermal conductivity of the CsAg5Te3 nanostructured material is 0.19 W m-1 K-1, which is almost the lowest among the state-of-the-art thermoelectric materials. Finally, at 673 K, the maximum zT value of CsAg5Te3 can reach ∼0.67. This study provides a feasible pathway for low-cost preparation of nanostructured thermoelectric materials.

10.
Materials (Basel) ; 16(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068050

RESUMO

Reducing the interfacial defects between the perovskite/electron transport layer (ETL) is the key point to improving the efficient and stable performance of perovskite solar cells (PSCs). In this study, two self-assembled molecules ((aminomethyl)phosphonic acid and glycine) with different functional groups (phosphonic acid (-H2PO3) and carboxylic acid (-COOH)) were mixed to form the buried bottom interface of PSCs. The synergistic effect of -H2PO3 with its higher anchoring ability and -COOH with its fast carrier transport improved the performance of PSCs. Additionally, the SnO2 modified by mixed self-assembly molecules (M-SAM) showed a more appropriate energy level alignment, favoring charge transport and minimizing energy loss. In addition, the amine group (-NH2) on the two small molecules effectively interacted with uncoordinated Pb2+ in perovskite and improved the quality of the perovskite films. Consequently, the (FAPbI3)0.992(MAPbBr3)0.008 PSCs with M-SAM reached a PCE of 24.69% (0.08 cm2) and the perovskite modules achieved a champion efficiency of 18.57% (12.25 cm2 aperture area). Meanwhile, it still maintained more than 91% of its initial PCE after being placed in nitrogen atmosphere at 25 °C for 1500 h, which is better than that of the single-SAM and control devices. Further reference is provided for the future commercialization of perovskite with efficient and stable characteristics.

11.
Colloids Surf B Biointerfaces ; 222: 113110, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586236

RESUMO

Monodomain liquid crystal elastomers (mLCEs) are flexible and biocompatible smart materials that show unique behaviors of soft elasticity, anisotropy, and reversible shape changes above the nematic-isotropic transition temperature. Therefore, it has great potential for application in wearable devices and biologically. However, most of the reported mLCEs have nematic-isotropic transition temperature (TNI) higher than 60 °C; and above this TNI, the tensile strength of the mLCEs decreases by orders of magnitude. These issues have received little attention, limiting their application in humans. Herein, the TNI of mLCEs was reduced from 78.4 °C to 23.5 °C by substituting part of the rigid LC mesogens with a flexible backbone. The physical entanglement of hydrogen bonds between molecular chains alleviated the molecular chain slip caused by the long flexible backbone. The tensile strength remained constant during the phase transformation. Furthermore, dynamic disulfide bonds were used to modify the LC polymer network, imparting it with excellent antimicrobial, programmable, and self-healing properties. To realize its application in the closure of skin wounds, a porous PHG-mLCE/hydrogel patch that was breathable and waterproof was designed to increase skin adhesion (262 N/m).


Assuntos
Elastômeros , Cristais Líquidos , Humanos , Elastômeros/química , Cristais Líquidos/química , Polímeros/química , Elasticidade , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia
12.
iScience ; 26(4): 106357, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37009212

RESUMO

Monodomain liquid crystal elastomers (m-LCEs) exhibit large reversible deformations when subjected to light and heat stimuli. Herein, we developed a new method for the large-scale continuous preparation of m-LCE fibers. These m-LCE fibers exhibit a reversible contraction ratio of 55.6%, breaking strength of 162 MPa (withstanding a load of 1 million times its weight), and maximum output power density of 1250 J/kg, surpassing those of previously reported m-LCEs. These excellent mechanical properties are mainly attributed to the formation of a homogeneous molecular network. Furthermore, the fabrication of m-LCEs with permanent plasticity using m-LCEs with impermanent instability without external intervention was realized by the synergistic effects of the self-restraint of mesogens and the prolonged relaxation process of LCEs. The designed LCE fibers, which are similar to biological muscle fibers and can be easily integrated, exhibit broad application prospects in artificial muscles, soft robots, and micromechanical systems.

13.
Sci Adv ; 8(11): eabm0984, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294236

RESUMO

Traction stress between contact objects is ubiquitous and crucial for various physical, biological, and engineering processes such as momentum transfer, tactile perception, and mechanical reliability. Newly developed techniques including electronic skin or traction force microscopy enable traction stress measurement. However, measuring the three-dimensional distribution during a dynamic process remains challenging. Here, we demonstrated a method based on stereo vision to measure three-dimensional traction stress with high spatial and temporal resolution. It showed the ability to image the two-stage adhesion failure of bionic microarrays and display the contribution of elastic resistance and adhesive traction to rolling friction at different contact regions. It also revealed the distributed sucking and sealing effect of the concavity pedal waves that propelled a snail crawling in the horizontal, vertical, and upside-down directions. We expected that the method would advance the understanding of various interfacial phenomena and greatly benefit related applications across physics, biology, and robotics.

14.
Nanoscale ; 13(17): 8304-8312, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899842

RESUMO

Mechanical energy harvesters are widely studied because of their diverse applications, such as harvesting ocean wave energy, self-powered wireless sensors, portable power supplies and so on. To be feasible, an energy harvester needs to provide a high output current and voltage, in addition to being environmentally friendly. Hence, in this study, a new energy harvester is developed via reversible deformation of a three-dimensional graphene aerogel which was immersed in a salt solution. The movement of solvated ions in the diffusion layer during the squeezing of the electrode induced the transmission of electrons out of graphene, resulting in electrical energy. The developed harvester can supply a power density of 11.7 W kg-1 and an energy density of 14.3 J kg-1, in addition to achieving a high energy conversion efficiency of approximately 43.2%. The device can also generate a high open-circuit voltage and short-circuit current when an external compression strain is applied. Moreover, it can be easily scaled up by being connected in series with multiple harvesters. Thus, the proposed energy harvester can not only be widely used for harvesting ocean wave energy, but also for adsorbing pollutants to prevent the pollution of ocean environments.

15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 24(4): 752-5, 2007 Aug.
Artigo em Zh | MEDLINE | ID: mdl-17899737

RESUMO

PACS (Picture Archiving and Communication Systems) is the hot spot of hospital information construction research and DICOM (Digital Imaging and Communication in Medicine) is the international standard about data compression and translation of medical image and relational information. Supporting DICOM standard is the necessary condition for medical image devices to join into PACS net. In making reforms in the old fashioned medical devices in hospitals, it is necessary to add DICOM interface for medical image devices. In this paper, DICOM information model is introduced and software system is implemented with Visual C + + programming, especially the writing, reading and C-STORE service in communication function are introduced in detail.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador , Sistemas de Informação em Radiologia/instrumentação , Apresentação de Dados , Humanos , Processamento de Imagem Assistida por Computador/normas , Sistemas Computadorizados de Registros Médicos , Sistemas de Informação em Radiologia/normas
16.
J Colloid Interface Sci ; 677(Pt B): 21-29, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39133995

RESUMO

The architecture of electrodes plays a pivotal role in the transfer and transportation of charges during electrochemical reactions. Selecting optimal electrode materials and devising well-conceived electrode structures can substantially enhance the electrochemical performance of devices. This manuscript leverages 3D printing technology to fabricate asymmetric supercapacitor devices featuring regular layered configurations. By investigating the impact of various materials on the internal architecture of printed electrodes, we establish a stratified electrode structure with an orderly arrangement, thereby significantly improving asymmetric charge transfer between electrodes. The application of 3D printing technology to construct electrode structures effectively mitigates the agglomeration of electrode materials. The 3D-printed VCG//MXene devices demonstrate exceptional areal capacitance (205.57 mF cm-2) and energy density (60.03 µWh cm-2), with a power density of 0.174 W cm-2. Consequently, selecting appropriate materials for fabricating printable electrode structures and achieving efficient 3D printing is anticipated to offer novel insights into the construction and enhancement of miniature asymmetric micro-supercapacitor (MSCs) devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA