Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2405156121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110736

RESUMO

The fundamental question of "what is the transport path of electrons through proteins?" initially introduced while studying long-range electron transfer between localized redox centers in proteins in vivo is also highly relevant to the transport properties of solid-state, dry metal-protein-metal junctions. Here, we report conductance measurements of such junctions, Au-(Azurin monolayer ensemble)-Bismuth (Bi) ones, with well-defined nanopore geometry and ~103 proteins/pore. Our results can be understood as follows. (1) Transport is via two interacting conducting channels, characterized by different spatial and time scales. The slow and spatially localized channel is associated with the Cu center of Azurin and the fast delocalized one with the protein's polypeptide matrix. Transport via the slow channel is by a sequential (noncoherent) process and in the second one by direct, off-resonant tunneling. (2) The two channels are capacitively coupled. Thus, with a change in charge occupation of the weakly coupled (metal center) channel, the broad energy level manifold, responsible for off-resonance tunneling, shifts, relative to the electrodes' Fermi levels. In this process, the off-resonance (fast) channel dominates transport, and the slow (redox) channel, while contributing only negligibly directly, significantly affects transport by intramolecular gating.

2.
Small ; 20(40): e2402485, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38804825

RESUMO

Junctions based on electronic ballistic waveguides, such as semiconductor nanowires or nanoribbons with transverse structural variations in the order of a large fraction of their Fermi wavelength, are suggested as highly efficient thermoelectric (TE) devices. Full harnessing of their potential requires a capability to either deterministically induce structural variations that tailor their transmission properties at the Fermi level or alternatively to form waveguides that are disordered (chaotic) but can be structurally modified continuously until favorable TE properties are achieved. Well-established methods to realize either of these routes do not exist. Here, disordered bismuth (Bi) waveguides are reported, which are both formed and structurally tuned by electromigration until their efficiency as TE devices is maximized. In accordance with theory, the conductance of the most efficient TE waveguides is in the sub quantum of conductance regime. The stability of these structures is found to be substantially higher than other actively studied devices such as single molecule junctions.

3.
Macromol Rapid Commun ; : e2400644, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401311

RESUMO

The suboptimal ionic conductivity of commercial polyolefin separators exacerbates uncontrolled lithium dendrite formation, deteriorating lithium metal battery performance and posing safety hazards. To address this challenge, a novel organic-inorganic composite separator designed is prepared to enhance ion transport and effectively suppress dendrite growth. This separator features a thermally stable, highly porous poly(m-phenylene isophthalamide) (PMIA) electrospun membrane, coated with ultralong hydroxyapatite (HAP) nanowires that promote "ion flow redistribution." The synergistic effects of the nitrogen atoms in PMIA and the hydroxyl groups in HAP hinder anion transport while facilitating efficient Li+ conduction. Meanwhile, the optimized unilateral pore structure ensures uniform ion transport. These results show that the 19 µm-thick HAP/PMIA composite separator achieves remarkable ionic conductivity (0.68 mS cm-1) and a high lithium-ion transference number (0.51). Lithium symmetric cells using HAP/PMIA separators exhibit a lifespan exceeding 1000 h with low polarization, significantly outperforming commercial polypropylene separators. Furthermore, this separator enables LiFePO4||Li cells to achieve an enhanced retention of 97.3% after 200 cycles at 1 C and demonstrates impressive rate capability with a discharge capacity of 72.7 mAh g-1 at 15 C.

4.
J Transl Med ; 21(1): 436, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403157

RESUMO

BACKGROUND: Impaired sensitivity to thyroid hormones is a newly proposed clinical entity associated with hyperuricemia in the subclinical hypothyroid population. However, it is unknown whether the association exists in the euthyroid population. This study aimed to explore the association of impaired sensitivity to thyroid hormones (assessed by the thyroid feedback quantile-based index [TFQI], parametric thyroid feedback quantile-based index [PTFQI], thyrotrophic thyroxine resistance index [TT4RI] and thyroid-stimulating hormone index [TSHI]) with hyperuricemia and quantify the mediating effect of body mass index BMI in the euthyroid population. METHODS: This cross-sectional study enrolled Chinese adults aged ≥ 20 years who participated in the Beijing Health Management Cohort (2008-2019). Adjusted logistic regression models were used to explore the association between indices of sensitivity to thyroid hormones and hyperuricemia. Odds ratios [OR] and absolute risk differences [ARD] were calculated. Mediation analyses were performed to estimate direct and indirect effects through BMI. RESULTS: Of 30,857 participants, 19,031 (61.7%) were male; the mean (SD) age was 47.3 (13.3) years; and 6,515 (21.1%) had hyperuricemia. After adjusting for confounders, individuals in the highest group of thyroid hormone sensitivity indices were associated with an increased prevalence of hyperuricemia compared with the lowest group (TFQI: OR = 1.18, 95% CI 1.04-1.35; PTFQI: OR = 1.20, 95% CI 1.05-1.36; TT4RI: OR = 1.17, 95% CI 1.08-1.27; TSHI: OR = 1.12, 95% CI 1.04-1.21). BMI significantly mediated 32.35%, 32.29%, 39.63%, and 37.68% of the associations of TFQI, PTFQI, TT4RI and TSHI with hyperuricemia, respectively. CONCLUSIONS: Our research revealed that BMI mediated the association between impaired sensitivity to thyroid hormones and hyperuricemia in the euthyroid population. These findings could provide useful evidence for understanding the interaction between impaired sensitivity to thyroid hormone and hyperuricemia in euthyroid individuals and suggest the clinical implications of weight control in terms of impaired thyroid hormones sensitivity.


Assuntos
Hiperuricemia , Adulto , Masculino , Humanos , Feminino , Hiperuricemia/complicações , Estudos Transversais , Hormônios Tireóideos , Obesidade/complicações , Obesidade/epidemiologia , Tiroxina , Tireotropina
5.
NMR Biomed ; 35(12): e4809, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35925046

RESUMO

Multishot scan magnetic resonance imaging (MRI) acquisition is inherently sensitive to motion, and motion artifact reduction is essential for improving the image quality in MRI. This work proposes and validates a new end-to-end motion-correction method for the multishot sequence that incorporates a conditional generative adversarial network with minimum entropy (cGANME) of MR images. The cGANME contains an encoder-decoder generator to obtain motion-corrected images and a PatchGAN discriminator to classify the image as either real (motion-free) or fake (motion-corrected). The entropy of the images is set as one loss item in the cGAN's loss as the entropy increases monotonically with the motion artifacts. An ablation experiment of the different weights of entropy loss was performed to evaluate the function of entropy loss. The preclinical dataset was acquired with a fast spin echo pulse sequence on a 7.0-T scanner. After the simulation, we had 10,080/2880/1440 slices for training, testing, and validating, respectively. The clinical dataset was downloaded from the Human Connection Project website, and 11,300/3500/2000 slices were used for training, testing, and validating after simulation, respectively. Extensive experiments for different motion patterns, motion levels, and protocol parameters demonstrate that cGANME outperforms traditional and some state-of-the-art, deep learning-based methods. In addition, we tested cGANME on in vivo awake rats and mitigated the motion artifacts, indicating that the model has some generalizability.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Animais , Ratos , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Entropia , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Artefatos
6.
Int J Mol Sci ; 15(8): 13388-400, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25089873

RESUMO

The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS) production by dihydroethidine (DHE) and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF) were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death.


Assuntos
Fator de Indução de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Núcleo Celular/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Rotenona/farmacologia , Ubiquinona/análogos & derivados , Animais , Caspase 9/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/farmacologia , Água/química
7.
Adv Sci (Weinh) ; : e2405658, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324840

RESUMO

The proton exchange membrane water electrolyzer (PEMWE) is one of the most promising electrochemical energy conversion devices for hydrogen production, while still limited by performance bottlenecks at high current densities, due to the lack of mass transfer insights. To investigate the mechanisms of oxygen transport inside the PEMWE at high current density and its relation to electrolytic performance. Operational in situ x-ray imaging is utilized to simultaneously characterize the bubble behavior and voltage response in a novel designed visual mini-cell, and it is identified that oxygen evolution and transport in the PEMWE follow the process of bubble nucleation, growth, and detachment. Based on the results of mini-cells with three porous transport layers (PTLs) up to 9 A cm-2 operation, it revealed that critical current densities exist for both carbon-based and titanium-based PTLs. Once exceeding the critical current density, the cell voltage can no longer be stabilized and the cell exhibits a significant oxygen overpotential. To illustrate this, the concept of interfacial separation zone (ISZ) is first proposed, which is an effective pathway for bubble growth and separation and the pattern of the ISZ exhibits specific regimes with the critical current density. Ultimately, a new approach for better understanding the mechanisms of oxygen transport is revealed.

8.
Small Methods ; : e2401133, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39410719

RESUMO

Addressing the issue of inactive dead lithium deposition on the anode side remains a significant challenge for anode-free lithium metal batteries. While lithium compensation techniques can mitigate lithium depletion, directly introducing lithium compounds into the cathode material may degrade the electrode structure. Here the design and fabrication of a novel lithium replenishment separator (LRS) using a lithium compensation agent of Li2C4O4 is reported. The electrospun LRS demonstrates excellent ionic conductivity of 1.82 mS cm-1 and a high Li+ transference number of 0.51. Such a functionalized LRS not only provides additional active lithium for anode-free lithium metal batteries but also promotes uniform deposition of lithium metal. Compared with conventional polyolefin-based separators, the LRS effectively boosts LiFePO4||Cu anode-free batteries with enhanced cyclability. These results suggest this LRS strategy can find promising applications in next-generation anode-free batteries with high energy densities.

9.
Nutrients ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892569

RESUMO

The acceleration of aging is a risk factor for numerous diseases, and diet has been identified as an especially effective anti-aging method. Currently, research on the relationship between dietary nutrient intake and accelerated aging remains limited, with existing studies focusing on the intake of a small number of individual dietary nutrients. Comprehensive research on the single and mixed anti-aging effects of dietary nutrients has not been conducted. This study aimed to comprehensively explore the effects of numerous dietary nutrient intakes, both singly and in combination, on the acceleration of aging. Data for this study were extracted from the 2015-2018 National Health and Nutrition Examination Surveys (NHANES). The acceleration of aging was measured by phenotypic age acceleration. Linear regression (linear), restricted cubic spline (RCS) (nonlinear), and weighted quantile sum (WQS) (mixed effect) models were used to explore the association between dietary nutrient intake and accelerated aging. A total of 4692 participants aged ≥ 20 were included in this study. In fully adjusted models, intakes of 16 nutrients were negatively associated with accelerated aging (protein, vitamin E, vitamin A, beta-carotene, vitamin B1, vitamin B2, vitamin B6, vitamin K, phosphorus, magnesium, iron, zinc, copper, potassium, dietary fiber, and alcohol). Intakes of total sugars, vitamin C, vitamin K, caffeine, and alcohol showed significant nonlinear associations with accelerated aging. Additionally, mixed dietary nutrient intakes were negatively associated with accelerated aging. Single dietary nutrients as well as mixed nutrient intake may mitigate accelerated aging. Moderately increasing the intake of specific dietary nutrients and maintaining dietary balance may be key strategies to prevent accelerated aging.


Assuntos
Envelhecimento , Dieta , Nutrientes , Inquéritos Nutricionais , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Dieta/estatística & dados numéricos , Dieta/métodos , Nutrientes/administração & dosagem , Idoso , Adulto Jovem , Ingestão de Alimentos/fisiologia , Modelos Lineares
10.
Biol Trace Elem Res ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218814

RESUMO

Elevated arterial stiffness has been associated with exposure to heavy metals such as lead (Pb) and cadmium (Cd). However, the collective impact of multiple metals and the underlying mechanisms are not fully elucidated. The purpose of this study was to assess the combined effects of exposure to nine heavy metals on arterial stiffness and explore whether serum alkaline phosphatase (ALP) acts as a mediator in this relationship. In the retrospective analysis, data from 8,700 participants were retrieved from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Arterial stiffness was measured by estimated pulse wave velocity (ePWV). The cumulative impact of exposure to multiple metals was examined using adaptive elastic-net, environmental risk score, weighted quantile sum regression, and quantile g-computation. Additionally, mediation analysis was conducted to explore the potential mediating role of serum ALP. We found that combined exposure to multiple metals was consistently associated with elevated ePWV, with Ba, Pb, and Sb exhibiting the greatest contributions. Notably, serum ALP partially mediated the associations between individual (Pb, Sb) and mixed metal exposure with ePWV, with mediation proportions at 10.76% for Pb, 18.22% for Sb, and 11.07% for mixed metal exposure. In conclusion, this study demonstrates a clear association between exposure to heavy metals, either individually or in combination, and heightened arterial stiffness. Furthermore, the findings suggest that serum ALP activity may act as a mediator in these relationships.

11.
J Am Heart Assoc ; 13(20): e035764, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39392152

RESUMO

BACKGROUND: The atherogenic effect of remnant cholesterol is being increasingly acknowledged. This study aimed to explore the association of discordance between remnant cholesterol and low-density lipoprotein cholesterol with stroke onset using 2 Chinese national cohorts. METHODS AND RESULTS: We studied 11 139 participants from CHARLS (China Health and Retirement Longitudinal Study) and 5993 participants from CHNS (China Health and Nutrition Survey) aged 45 years or older. The discordance between remnant cholesterol and low-density lipoprotein cholesterol was defined using the difference in percentile units (>15 units). There were 988 (8.9%) and 128 (2.1%) stroke events reported during follow-up in the 2 cohorts. Elevated remnant cholesterol was significantly associated with a higher risk of total stroke in 2 cohorts. After adjusting for remnant cholesterol level, the discordantly high remnant cholesterol group was significantly associated with an increased stroke risk (CHARLS: subdistribution hazard ratio [sHR], 1.31 [95 CI, 1.10-1.55]; CHNS: sHR, 1.84 [95 CI, 1.15-3.08]) compared with the discordantly low group. Consistent results were shown even among those with optimal low-density lipoprotein cholesterol level. CONCLUSIONS: The discordance between remnant cholesterol and low-density lipoprotein cholesterol, representing the intraindividual discrepancy, is significantly associated with stroke onset among Chinese adults.


Assuntos
LDL-Colesterol , Colesterol , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , China/epidemiologia , LDL-Colesterol/sangue , Colesterol/sangue , Idoso , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/etiologia , Incidência , Fatores de Risco , Biomarcadores/sangue , Inquéritos Nutricionais , Medição de Risco , Estudos Longitudinais
12.
Front Endocrinol (Lausanne) ; 15: 1404234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135627

RESUMO

Purpose: Small dense low-density lipoprotein cholesterol (S-LDL-C) has been suggested as a particularly atherogenic factor for ischemic stroke (IS) in observational studies, but the causality regarding the etiological subtype remains unclear. This study aims to explore the causal effects of small dense low-density lipoprotein cholesterol (S-LDL-C), medium (M-LDL-C) and large (L-LDL-C) subfractions on the lifetime risk of ischemic stroke (IS) and main subtypes using two-sample Mendelian randomization (TSMR) design. Methods: We identified genetic instruments for S-LDL-C, M-LDL-C and L-LDL-C from a genome-wide association study of 115 082 UK Biobank participants. Summary-level data for genetic association of any ischemic stroke (AIS), large artery stroke (LAS), small vessel stroke (SVS) and cardioembolic stroke (CES) were obtained from MEGASTROKE consortium. Accounting for the pleiotropic effects of triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C), we conducted multivariable TSMR analysis. Results: In univariable TSMR, we found a causal association between genetically predicted S-LDL-C and LAS (IVW-FE: odds ratio (OR) = 1.481, 95% confidence interval (CI): 1.117-1.963, P = 0.006, q = 0.076) but not AIS, SVS or CES. No causal effects were observed for M-LDL-C or L-LDL-C in terms of AIS and IS subtype. In multivariable analysis, the causal association between S-LDL-C and LAS remained significant (IVE-MRE: OR = 1.329, 95% CI: 1.106-1.597, P = 0.002). Conclusions: Findings supported a causal association between S-LDL-C and LAS. Further studies are warranted to elucidate the underlying mechanism and clinical benefit of targeting S-LDL-C.


Assuntos
LDL-Colesterol , Estudo de Associação Genômica Ampla , AVC Isquêmico , Análise da Randomização Mendeliana , Humanos , AVC Isquêmico/genética , AVC Isquêmico/epidemiologia , AVC Isquêmico/sangue , LDL-Colesterol/sangue , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Feminino , Fatores de Risco , Masculino
13.
PNAS Nexus ; 3(2): pgae033, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380054

RESUMO

Observational epidemiological studies have reported a relationship between remnant cholesterol and stroke. However, the results are inconclusive, and causality remains unclear due to confounding or reverse causality. Our objective in this study was to investigate the causal relevance of remnant cholesterol and the risk of stroke and its subtypes using the Mendelian randomization (MR) approach. Genome-wide association studies (GWASs) including 115,082 European individuals (UK Biobank) were used to identify instruments for remnant cholesterol, including intermediate-density lipoprotein (IDL) cholesterol and very-low-density lipoprotein (VLDL) cholesterol. Summary-level data for total stroke, intracerebral hemorrhage, subarachnoid hemorrhage, ischemic stroke (IS), and IS subtypes were obtained from GWAS meta-analyses conducted by the MEGASTROKE consortium. Univariable and multivariable MR analyses were performed. The GWAS identified multiple single-nucleotide polymorphisms after clumping for remnant cholesterol (n = 52), IDL cholesterol (n = 62), and VLDL cholesterol (n = 67). Assessed individually using MR, remnant cholesterol (weighted median: odds ratio [OR] 1.32 per 1-SD higher trait; 95% CI: 1.04-1.67; P = 0.024) had effect estimates consistent with a higher risk of LAS-IS, driven by IDL cholesterol (OR 1.32; 95% CI: 1.04-1.68; P = 0.022). In multivariable MR, IDL cholesterol (OR 1.46; 95% CI: 1.10-1.93; P = 0.009) retained a robust effect on LAS-IS after controlling for VLDL cholesterol and high-density lipoprotein cholesterol. The MR analysis did not indicate causal associations between remnant cholesterol and other stroke subtypes. This study suggests that remnant cholesterol is causally associated with the risk of LAS-IS driven by IDL cholesterol.

14.
Nat Commun ; 13(1): 4742, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961982

RESUMO

We report of a high yield method to form nanopore molecular ensembles junctions containing ~40,000 molecules, in which the semimetal bismuth (Bi) is a top contact. Conductance histograms of these junctions are double-peaked (bi-modal), a behavior that is typical for single molecule junctions but not expected for junctions with thousands of molecules. This unique observation is shown to result from a new form of quantum interference that is inter-molecular in nature, which occurs in these junctions since the very long coherence length of the electrons in Bi enables them to probe large ensembles of molecules while tunneling through the junctions. Under such conditions, each molecule within the ensembles becomes an interference path that modifies via its tunneling phase the electronic structure of the entire junction. This new form of quantum interference holds a great promise for robust novel conductance effects in practical molecular junctions.

15.
Bioengineered ; 13(2): 4301-4308, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137654

RESUMO

BRCAT54 (also known as MRPS30 divergent transcript) is an anti-tumor long non-coding RNA (lncRNA) in lung cancer, while its role in vestibular schwannoma (VS) is unclear. We predicted that BRCAT54 could interact with microRNA (miR)-21, which suppresses VS cell proliferation. This study was then carried out to study the interaction between BRCAT54 and miR-21 in VS. A total of 56 VS samples and 42 normal vestibular nerve (VN) samples were included in this study. The expression of BRCAT54 and miR-21 in these samples were analyzed with RT-qPCR. Subcellular location of BRCAT54 in primary VS cells was analyzed by subcellular fractionation assay. The direct interaction between BRCAT54 and miR-21 was analyzed through RNA pull-down assay. Overexpression assay was performed to explore the interaction between BRCAT54 and miR-21. The role of BRCAT54 and miR-21 in primary VS cell proliferation was analyzed using BrdU assay. We found that BRCAT54 was downregulated in VS samples than that in VN samples, while miR-21 was upregulated in VS samples. BRCAT54 and miR-21 were not closely correlated. BRCAT54 was detected in both nuclear and cytoplasm samples, and BRCAT54 directly interacted with miR-21. However, BRCAT54 and miR-21 did not affect the expression of each other. BRCAT54 suppressed primary VS cell proliferation and inhibited the role of miR-21 in promoting cell proliferation. Therefore, BRCAT54 may sponge miR-21 to suppress cell proliferation in VS.


Assuntos
Proliferação de Células/genética , MicroRNAs/genética , Neuroma Acústico , RNA Longo não Codificante/genética , Adulto , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia
16.
Int J Mol Med ; 48(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34080644

RESUMO

Hyperglycemia aggravates brain damage caused by cerebral ischemia/reperfusion (I/R) and increases the permeability of the blood­brain barrier (BBB). However, there are relatively few studies on morphological changes of the BBB. The present study aimed to investigate the effect of hyperglycemia on BBB morphological changes following cerebral I/R injury. Streptozotocin­induced hyperglycemic and citrate­buffered saline­injected normoglycemic rats were subjected to 30 min middle cerebral artery occlusion. Neurological deficits were evaluated. Brain infarct volume was assessed by 2,3,5­triphenyltetrazolium chloride staining and BBB integrity was evaluated by Evans blue and IgG extravasation following 24 h reperfusion. Changes in tight junctions (TJ) and basement membrane (BM) proteins (claudin, occludin and zonula occludens­1) were examined using immunohistochemistry and western blotting. Astrocytes, microglial cells and neutrophils were labeled with specific antibodies for immunohistochemistry after 1, 3 and 7 days of reperfusion. Hyperglycemia increased extravasations of Evan's blue and IgG and aggravated damage to TJ and BM proteins following I/R injury. Furthermore, hyperglycemia suppressed astrocyte activation and damaged astrocytic endfeet surrounding cerebral blood vessels following I/R. Hyperglycemia inhibited microglia activation and proliferation and increased neutrophil infiltration in the brain. It was concluded that hyperglycemia­induced BBB leakage following I/R might be caused by damage to TJ and BM proteins and astrocytic endfeet. Furthermore, suppression of microglial cells and increased neutrophil infiltration to the brain may contribute to the detrimental effects of pre­ischemic hyperglycemia on the outcome of cerebral ischemic stroke.


Assuntos
Membrana Basal , Barreira Hematoencefálica , Isquemia Encefálica , Hiperglicemia , Junções Íntimas , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Membrana Basal/metabolismo , Membrana Basal/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Junções Íntimas/metabolismo , Junções Íntimas/patologia
17.
Materials (Basel) ; 13(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192167

RESUMO

This paper aimed to perform systematical study on the distribution of landslide thrust in pile-anchor support system, which has been a widely applicable treatment method in landslide control with safety, highly efficiency and adaptation. The advantage of photoelastic technique is visualization of strain and stress fields, therefore photoelastic model tests are conducted to show the distribution of landslide thrust in pile-anchor structure before failure in landslide. The effects of different materials and pile lengths are investigated by 6 photoelastic test cases under different loading conditions. It can be found from quantitative analysis of experimental results that load proportion of anchor would increase gradually with the decrease of pile embedded depth or the increase of landslide thrust force. Meanwhile, landslide thrust distribution in pile-anchor structure is directly affected by the stiffness of piles. The pile-anchor structure is significantly better at reducing bending moment value and optimizing bending moment distribution of pile. Finally, some theoretical analysis and design suggestions are proposed based on the experimental study.

18.
Nucleic Acids Res ; 35(12): 3963-73, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17553827

RESUMO

Selenoprotein P (Sel P) is a selenium-rich glycoprotein believed to play a key role in selenium (Se) transport throughout the body. Development of a Sel P knockout mouse model has supported this notion and initial studies have indicated that selenium supply to various tissues is differentially affected by genetic deletion of Sel P. Se in the form of the amino acid, selenocysteine, is incorporated into selenoproteins at UGA codons. Thus, Se availability affects not only selenoprotein levels, but also the turnover of selenoprotein mRNAs via the nonsense-mediated decay pathway. We investigated how genetic deletion of Sel P in mice affected levels of the mRNAs encoding all known members of the murine selenoprotein family, as well as three non-selenoprotein factors involved in their synthesis, selenophosphate synthetase 1 (SPS1), SECIS-binding protein 2 (SBP2) and SECp43. Our findings present a comprehensive description of selenoprotein mRNA expression in the following murine tissues: brain, heart, intestine, kidney, liver, lung, spleen and testes. We also describe how abundance of selenoproteins and selenoprotein-synthesis factors are affected by genetic deletion of Sel P in some of these tissues, providing insight into how the presence of this selenoprotein influences selenoprotein mRNA levels, and thus, the selenoproteome.


Assuntos
Selênio/metabolismo , Selenoproteína P/genética , Selenoproteínas/metabolismo , Animais , Encéfalo/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Selenoproteína P/fisiologia , Selenoproteínas/genética , Testículo/metabolismo , Distribuição Tecidual
19.
Diabetes ; 55(2): 349-55, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16443767

RESUMO

Diabetes exacerbates neuronal cell death induced by cerebral ischemia. One contributing factor is enhanced acidosis during ischemia. Astrocytes are vulnerable to hypoxia under acidic conditions in vitro and may be targets of ischemia under diabetic conditions. The objective of this study was to determine whether diabetes would cause damage to astrocytes after an ischemic brain injury in vivo. Diabetic and nondiabetic rats were subjected to 5 min of forebrain ischemia and followed by 30 min, 6 h, or 1 or 3 days of recovery. The results showed that ischemia caused activation of astrocytes in nondiabetic rats. In contrast, diabetes caused astrocyte activation in early stage of reperfusion and astrocyte death in late stage of reperfusion. Remarkable astrocyte death was preceded by increased DNA oxidation. Further studies revealed that increased astrocyte damage coincided with enhanced production of free radicals. These data suggest that hyperglycemic ischemia worsens outcome in astrocytes, as it does in neurons.


Assuntos
Astrócitos/patologia , Morte Celular/fisiologia , Diabetes Mellitus Experimental/patologia , Traumatismo por Reperfusão/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Dano ao DNA , Diabetes Mellitus Experimental/induzido quimicamente , Macrófagos/metabolismo , Masculino , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA