Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(20): 8021-8035, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38659100

RESUMO

Alkali ion rechargeable batteries play a significant part in portable electronic devices and electronic vehicles. The rapid development of renewable energy technology nowadays demands batteries with even higher energy density for grid storage. To fulfill such demand, extensive research efforts have been devoted to optimizing electrochemical properties as well as developing novel energy storage schemes and designing new systems. In the investigation process, synchrotron-based X-ray spectroscopy plays a vital role in investigating the detailed degradation mechanism and developing novel energy storage schemes. Herein, we critically review the applications of synchrotron-based X-ray spectroscopy in battery research in recent years. This review begins with a discussion of the different scientific issues in alkali ion rechargeable batteries within various time and space scales. Subsequently, the principle of synchrotron-based X-ray spectroscopy is introduced, and the characteristics of various characterization techniques are summarized and compared. Typical application cases of synchrotron-based X-ray spectroscopy are then introduced into battery investigations. The final part presents perspectives in the development direction of both alkali ion rechargeable battery systems and synchrotron-based X-ray spectroscopy in the future.

2.
Small ; 20(15): e2307302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994389

RESUMO

Metal-semiconductor heterostructured catalysts have attracted great attention because of their unique interfacial characteristics and superior catalytic performance. Exsolution of nanoparticles is one of the effective and simple ways for in-situ growth of metal nanoparticles embedded in oxide surfaces and their favorable dispersion and stability. However, both high-temperature and a reducing atmosphere are required simultaneously in conventional exsolution, which is time-consuming and costly, and particles often agglomerate during the process. In this work, Ca0.9Ti0.8Ni0.1Fe0.1O3-δ (CTNF) is exposed to dielectric blocking discharge (DBD) plasma at room temperature to fabricate alloying FeNi3 nanoparticles from CTNF perovskite. FeNi3-CTNF has outstanding catalytic activity for photothermal reverse water gas shift reaction (RWGS). At 350 °C under full-spectrum irradiation, the carbon monoxide (CO) yield of FeNi3-CTNF (10.78 mmol g-1 h-1) is 11 times that of pure CaTiO3(CTO), and the CO selectivity is 98.9%. This superior catalytic activity is attributed to the narrow band gap, photogenerated electron migration to alloy particles, and abundant surface oxygen vacancies. The carbene pathway reaction is also investigated through in-situ Raman spectroscopy. The present work presents a straightforward method for the exsolution of nanoalloys in metal-semiconductor heterostructures for photothermal CO2 reduction.

3.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674074

RESUMO

Plexiform lesions are a hallmark of pulmonary arterial hypertension (PAH) in humans and are proposed to stem from dysfunctional angioblasts. Broiler chickens (Gallus gallus) are highly susceptible to PAH, with plexiform-like lesions observed in newly hatched individuals. Here, we reported the emergence of plexiform-like lesions in the embryonic lungs of broiler chickens. Lung samples were collected from broiler chickens at embryonic day 20 (E20), hatch, and one-day-old, with PAH-resistant layer chickens as controls. Plexiform lesions consisting of CD133+/vascular endothelial growth factor receptor type-2 (VEGFR-2)+ angioblasts were exclusively observed in broiler embryos and sporadically in layer embryos. Distinct gene profiles of angiogenic factors were observed between the two strains, with impaired VEGF-A/VEGFR-2 signaling correlating with lesion development and reduced arteriogenesis. Pharmaceutical inhibition of VEGFR-2 resulted in enhanced lesion development in layer embryos. Moreover, broiler embryonic lungs displayed increased activation of HIF-1α and nuclear factor erythroid 2-related factor 2 (Nrf2), indicating a hypoxic state. Remarkably, we found a negative correlation between lung Nrf2 activation and VEGF-A and VEGFR-2 expression. In vitro studies indicated that Nrf2 overactivation restricted VEGF signaling in endothelial progenitor cells. The findings from broiler embryos suggest an association between plexiform lesion development and impaired VEGF system due to aberrant activation of Nrf2.


Assuntos
Galinhas , Pulmão , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Embrião de Galinha , Pulmão/metabolismo , Pulmão/embriologia , Pulmão/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética
4.
Ecotoxicol Environ Saf ; 262: 115161, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37356398

RESUMO

Aflatoxin B1 (AFB1) is the most toxic mycotoxin contaminant, which is widely present in crops and poses a major safety hazard to animal and human health. To alleviate the cytotoxic effects of AFB1 on the intestine, we tested the protective effects of porcine ß-defensin-2 (pBD-2). Results demonstrated that pBD-2 inhibited oxidative stress induced by AFB1 via decreasing the levels of ROS and enhancing the expression of antioxidant factors SOD-2 and NQO-1. In addition, pBD-2 attenuated AFB1-induced intestinal porcine epithelial cell line-J2 (IPEC-J2) injury through blocking mitochondria-mediated apoptosis. In vivo, pBD-2 treatment restored the intestinal mucosal structure and reduced the expression levels of apoptosis factors caspase-3 and Bax/Bcl-2. In conclusion, these results indicated that pBD-2 can alleviate AFB1-induced intestinal mucosal injury by inhibiting oxidative stress and mitochondria-mediated apoptosis. This study provides an effective strategy in developing pBD-2 as green feed additive to prevent AFB1 damage to animals.

5.
Pol J Pathol ; 74(3): 182-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955537

RESUMO

S100 calcium-binding protein A16 (S100A16) has previously been reported to play a role in tumor cells. Nevertheless, the role that S100A16 played in nephroblastoma cells remains obscure. The expression of S100A16 and DEPDC1 were detected via RT-q PCR and western blotting. Cell transfection was performed to overexpress DEPDC1 or interfere S100A16. CCK8 was applied for the assessment of cell viability. The apoptotic level and the capabilities of WiT49 cells to proliferate, invade and migrated were appraised utilizing Tunel, colony formation Transwell, and wound healing, separately. The angiogenesis was estimated through tube formation assay. Co-immunoprecipitation (CO-IP) was performed to examine the targeted binding of S100A16 to DEPDC1. The contents of PI3K/Akt/mTOR pathway-related proteins were resolved by virtue of western blot. S100A16 and DEPDC1 expression levels were significantly increased in nephroblastoma cell lines. S100A16 deletion suppressed nephroblastoma cell proliferative, invasive, migrative and angiogenetic capabilities but facilitated the apoptotic level. Moreover, S100A16 could bind DEPDC1, DEPDC1 overexpression partially reversed the inhibitory effect of S100A16 interference on nephroblastoma cell. DEPDC1 overexpression also partially counteracted the suppressive impacts of S100A16 interference on PI3K/Akt/mTOR pathway-related proteins. S100A16 synergistic with DEPDC1 promotes the progression and angiogenesis of nephroblastoma cell through the PI3K/Akt/mTOR pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Tumor de Wilms , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Tumor de Wilms/genética , Proteínas de Neoplasias/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas S100/metabolismo
6.
Molecules ; 28(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894613

RESUMO

Cation-anion co-doping has proven to be an effective method of improving the photocatalytic performances of CaTiO3 perovskites. In this regard, (La/Ce-N/S) co-doped CaTiO3 models were investigated for the first time using first-principles calculations based on a supercell of 2 × 2 × 2 with La/Ce concentrations of 0.125, 0.25, and 0.375. The energy band structure, density of states, charge differential density, electron-hole effective masses, optical properties, and the water redox potential were calculated for various models. According to our results, (La-S)-doped CaTiO3 with a doping ratio of 0.25 (LCOS1-0.25) has superior photocatalytic hydrolysis properties due to the synergistic performances of its narrow band gap, fast carrier mobility, and superb ability to absorb visible light. Apart from the reduction of the band gap, the introduction of intermediate energy levels by La and Ce within the band gap also facilitates the transition of excited electrons from valence to the conduction band. Our calculations and findings provide theoretical insights and solid predictions for discovering CaTiO3 perovskites with excellent photocatalysis performances.

7.
Angew Chem Int Ed Engl ; 62(5): e202215131, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36471651

RESUMO

Charge compensation on anionic redox reaction (ARR) has been promising to realize extra capacity beyond transition metal redox in battery cathodes. The practical development of ARR capacity has been hindered by high-valence oxygen instability, particularly at cathode surfaces. However, the direct probe of surface oxygen behavior has been challenging. Here, the electronic states of surface oxygen are investigated by combining mapping of resonant Auger electronic spectroscopy (mRAS) and ambient pressure X-ray photoelectron spectroscopy (APXPS) on a model LiCoO2 cathode. The mRAS verified that no high-valence oxygen can sustain at cathode surfaces, while APXPS proves that cathode electrolyte interphase (CEI) layer evolves and oxidizes upon oxygen gas contact. This work provides valuable insights into the high-valence oxygen degradation mode across the interface. Oxygen stabilization from surface architecture is proven a prerequisite to the practical development of ARR active cathodes.

8.
Respir Res ; 23(1): 290, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274148

RESUMO

BACKGROUND: Plexiform lesions, which have a dynamic appearance in structure and cellular composition, are the histological hallmark of severe pulmonary arterial hypertension in humans. The pathogenesis of the lesion development remains largely unknown, although it may be related to local inflammation and dysfunction in early progenitor endothelial cells (eEPCs). We tested the hypothesis that eEPCs contribute to the development of plexiform lesions by differentiating into macrophages in the setting of chronic inflammation. METHODS: The eEPC markers CD133 and VEGFR-2, macrophage lineage marker mannose receptor C-type 1 (MRC1), TNFα and nuclear factor erythroid 2-related factor 2 (Nrf2) in plexiform lesions in a broiler model were determined by immunohistochemistry. eEPCs derived from peripheral blood mononuclear cells were exposed to TNFα, and macrophage differentiation and angiogenic capacity of the cells were evaluated by phagocytotic and Matrigel plug assays, respectively. The role of Nrf2 in eEPC-to-macrophage transition as well as in MRC1 expression was also evaluated. Intratracheal installation of TNFα was conducted to determine the effect of local inflammation on the formation of plexiform lesions. RESULTS: Cells composed of the early lesions have a typical eEPC phenotype whereas those in more mature lesions display molecular and morphological characteristics of macrophages. Increased TNFα production in plexiform lesions was observed with lesion progression. In vitro studies showed that chronic TNFα challenge directed eEPCs to macrophage differentiation accompanied by hyperactivation of Nrf2, a stress-responsive transcription factor. Nrf2 activation (Keap1 knockdown) caused a marked downregulation in CD133 but upregulation in MRC1 mRNA. Dual luciferase reporter assay demonstrated that Nrf2 binds to the promoter of MRC1 to trigger its expression. In good agreement with the in vitro observation, TNFα exposure induced macrophage differentiation of eEPCs in Matrigel plugs, resulting in reduced neovascularization of the plugs. Intratracheal installation of TNFα resulted in a significant increase in plexiform lesion density. CONCLUSIONS: This work provides evidence suggesting that macrophage differentiation of eEPCs resulting from chronic inflammatory stimulation contributes to the development of plexiform lesions. Given the key role of Nrf2 in the phenotypic switching of eEPCs to macrophages, targeting this molecular might be beneficial for intervention of plexiform lesions.


Assuntos
Células Progenitoras Endoteliais , Hipertensão Pulmonar , Animais , Humanos , Células Progenitoras Endoteliais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Fator de Necrose Tumoral alfa , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch , Leucócitos Mononucleares , Galinhas , Inflamação , Macrófagos , RNA Mensageiro
9.
Chem Rev ; 120(14): 6820-6877, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31763824

RESUMO

Solid-state batteries have been attracting wide attention for next generation energy storage devices due to the probability to realize higher energy density and superior safety performance compared with the state-of-the-art lithium ion batteries. However, there are still intimidating challenges for developing low cost and industrially scalable solid-state batteries with high energy density and stable cycling life for large-scale energy storage and electric vehicle applications. This review presents an overview on the scientific challenges, fundamental mechanisms, and design strategies for solid-state batteries, specifically focusing on the stability issues of solid-state electrolytes and the associated interfaces with both cathode and anode electrodes. First, we give a brief overview on the history of solid-state battery technologies, followed by introduction and discussion on different types of solid-state electrolytes. Then, the associated stability issues, from phenomena to fundamental understandings, are intensively discussed, including chemical, electrochemical, mechanical, and thermal stability issues; effective optimization strategies are also summarized. State-of-the-art characterization techniques and in situ and operando measurement methods deployed and developed to study the aforementioned issues are summarized as well. Following the obtained insights, perspectives are given in the end on how to design practically accessible solid-state batteries in the future.

10.
Ecotoxicol Environ Saf ; 247: 114250, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334341

RESUMO

With the growing diversity and complexity of diet, animals and humans are at risk of exposure to aflatoxin B1 (AFB1), which is a well-known contaminant in the food chain that causes various toxicological effects. The intestine acts as the first barrier against external contaminants, but the effect of AFB1 on intestinal barrier has not been determined. This study aimed to evaluate AFB1 on the intestinal barrier function in vitro and in vivo. In vitro, porcine jejunal epithelial cells (IPEC-J2) were treated with increasing concentrations of AFB1 (10-60 mg/L). In vivo, Kunming (KM) mice were used as controls or gavaged with 1% dimethyl sulfoxide (110 mg/kg b.w.) and AFB1 (0.3 mg/kg b.w.) for 28 days. In IPEC-J2 cells, the cell viability decreased with increasing mycotoxin concentrations, and the viability of IPEC-J2 cells decreased significantly (P < 0.05) when the AFB1 concentrations were greater than 30 mg/L. In addition, quantitative real-time PCR, Western blot analysis, and immunofluorescence results show that AFB1 can downregulate the tight junction proteins and increase the expression levels of Caspase-3 and the ratio of Bax/Bcl-2, suggesting that AFB1 was cytotoxic to IPEC-J2. In vivo, the ratio of villus height to crypt depth, the intestinal wall thickness, the number of intestinal villus per 1000 µm in the jejunum, the expression levels of ZO-1, Claudin-3, Occludin, MUC2, and Caspase-3, and the ratio of Bax/Bcl-2 were significantly affected in mice exposed to AFB1. In vitro and in vivo results showed that the effects of exposure to AFB1 on the intestinal function in the jejunum of KM mice and in the IPEC-J2 was similar, suggesting that AFB1 may adversely affect animal intestine.


Assuntos
Aflatoxina B1 , Intestinos , Humanos , Suínos , Camundongos , Animais , Aflatoxina B1/toxicidade , Caspase 3/genética , Proteína X Associada a bcl-2 , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2
11.
Ecotoxicol Environ Saf ; 232: 113225, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124419

RESUMO

Aflatoxin B1 (AFB1) is an unavoidable environmental pollutant commonly found in feed and foodstuffs. It is the most toxic one of all the aflatoxins, which can cause severe impairment to testicular development and function. Yet, the underlying mechanisms of reproductive toxicity in rams sheep remain inconclusive. The study was designed to explore the effects of AFB1 on sheep testes through rumen-microbiota, oxidative stress and apoptosis. Six-month-old male Dorper rams (n = 6) were orally administrated with 1.0 mg/kg AFB1 (dissolved in 20 mL 4% ethanol) 24 h before the experiment. At the same time, rams in the control group (n = 6) were intragastrically administrated with 20 mL 4% ethanol. It was observed that acute AFB1 poisoning had significant (p < 0.05) toxin residue in the testis and could cause testicular histopathological damage. AFB1 stimulated the secretion of plasma testosterone level through regulating testosterone synthesis-related genes (StAR, 3ß-HSD, CYP11A1, and CYP17A1), which are accompanied by the increase of oxidative stress and testicular apoptosis that had a close relationship with the regulation of testosterone secretion. Interestingly, we observed rumen dysbacteriosis and decreased the abundances of Prevotella, Succiniclasticum, CF231, Ruminococcus, and Pseudobutyrivibrio in AFB1-exposed sheep, which were negatively correlated to the testosterone synthesis-related gene levels. Taken together, our findings indicated that AFB1 induced testicular damage and testicular dysfunction, which is related to testicular oxidative stress and apoptosis involved in rumen dysbacteriosis in sheep.


Assuntos
Aflatoxina B1 , Microbiota , Aflatoxina B1/toxicidade , Animais , Apoptose , Masculino , Estresse Oxidativo , Rúmen , Ovinos , Testículo
12.
J Am Chem Soc ; 143(32): 12800-12808, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34369752

RESUMO

In spite of the excellent electrochemical performance in lithium-ion batteries (LIBs), transition-metal compounds usually show inferior capacity and cyclability in sodium-ion batteries (SIBs), implying different reaction schemes between these two types of systems. Herein, coupling operando magnetometry with electrochemical measurement, we peformed a comprehensive investigation on the intrinsic relationship between the ion-embedding mechanisms and the electrochemical properties of the typical FeS2/Na (Li) cells. Operando magnetometry together with ex-situ transmission electron microscopy (TEM) measurement reveal that only part of FeS2 is involved in the conversion reaction process, while the unreactive parts form "inactive cores" that lead to the low capacity. Through quantification with Langevin fitting, we further show that the size of the iron grains produced by the conversion reaction are much smaller in SIBs than that in LIBs, which may lead to more serious pulverization, thereby resulting in worse cycle performance. The underlying reason for the above two above phenomena in SIBs is the sluggish kinetics caused by the larger Na-ion radius. Our work paves a new way for the investigation of novel SIB materials with high capacity and long durability.

13.
J Chem Phys ; 152(14): 140901, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295356

RESUMO

Interfacial behaviors and properties play critical roles in determining key practical parameters of electrochemical energy storage systems, such as lithium-ion and sodium-ion batteries. Soft x-ray spectroscopy features shallow penetration depth and demonstrates inherent surface sensitivity to characterize the interfacial behavior with elemental and chemical sensitivities. In this review, we present a brief survey of modern synchrotron-based soft x-ray spectroscopy of the interface in electrochemical energy storage systems. The technical focus includes core-level spectroscopy of conventional x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS). We show that while conventional techniques remain powerful for probing the chemical species on the surface, today's material research studies have triggered much more demanding chemical sensitivity that could only be offered by advanced techniques such as RIXS. Another direction in the field is the rapid development of various in situ/operando characterizations of complex electrochemical systems. Notably, the solid-state battery systems provide unique advantages for future studies of both the surface/interface and the bulk properties under operando conditions. We conclude with perspectives on the bright future of studying electrochemical systems through these advanced soft x-ray spectroscopic techniques.

14.
Angew Chem Int Ed Engl ; 59(44): 19691-19695, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32583547

RESUMO

To boost the performance for various applications, a rational bottom-up design on materials is necessary. The defect engineering on nanoparticle at the atomic level can efficiently tune the electronic behavior, which offers great opportunities in enhancing the catalytic performance. In this paper, we optimized the surface oxygen vacancy concentration and created the lattice distortion in rare-earth-based perovskite oxide through gradient replacement of the B site with valence alternated element. The dual defects make the electron spin state transit from low spin state to high spin state, thus decreasing the charge transport resistance. Furthermore, assembly the modified nanoparticle subunits into the micro-sized hollow multishelled structures can provide porous shells, abundant interior space and effective contact, which enables an enhanced mass transfer and a shorter charge transport path. As a result, the systemic design in the electronic and nano-micro structures for catalyst has brought an excellent oxygen evolution performance.

15.
Angew Chem Int Ed Engl ; 58(13): 4323-4327, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30710397

RESUMO

Lattice-oxygen redox (l-OR) has become an essential companion to the traditional transition-metal (TM) redox charge compensation to achieve high capacity in Li-rich cathode oxides. However, the understanding of l-OR chemistry remains elusive, and a critical question is the structural effect on the stability of l-OR reactions. Herein, the coupling between l-OR and structure dimensionality is studied. We reveal that the evolution of the oxygen-lattice structure upon l-OR in Li-rich TM oxides which have a three-dimensional (3D)-disordered cation framework is relatively stable, which is in direct contrast to the clearly distorted oxygen-lattice framework in Li-rich oxides which have a two-dimensional (2D)/3D-ordered cation structure. Our results highlight the role of structure dimensionality in stabilizing the oxygen lattice in reversible l-OR, which broadens the horizon for designing high-energy-density Li-rich cathode oxides with stable l-OR chemistry.

16.
Angew Chem Int Ed Engl ; 57(27): 8178-8183, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29722111

RESUMO

Layered O3-type sodium oxides (NaMO2 , M=transition metal) commonly exhibit an O3-P3 phase transition, which occurs at a low redox voltage of about 3 V (vs. Na+ /Na) during sodium extraction and insertion, with the result that almost 50 % of their total capacity lies at this low voltage region, and they possess insufficient energy density as cathode materials for sodium-ion batteries (NIBs). Therefore, development of high-voltage O3-type cathodes remains challenging because it is difficult to raise the phase-transition voltage by reasonable structure modulation. A new example of O3-type sodium insertion materials is presented for use in NIBs. The designed O3-type Na0.7 Ni0.35 Sn0.65 O2 material displays a highest redox potential of 3.7 V (vs. Na+ /Na) among the reported O3-type materials based on the Ni2+ /Ni3+ couple, by virtue of its increased Ni-O bond ionicity through reduced orbital overlap between transition metals and oxygen within the MO2 slabs. This study provides an orbital-level understanding of the operating potentials of the nominal redox couples for O3-NaMO2 cathodes. The strategy described could be used to tailor electrodes for improved performance.

17.
Nanotechnology ; 25(7): 075202, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24451997

RESUMO

Nano-branched TiO2 arrays were fabricated on fluorine-doped tin oxide (FTO) glass by a facile two-step chemical synthesis process. Self-powered UV photodetectors based on photoelectrochemical cells (PECs) were assembled using these TiO2 nano-branched arrays as photoanodes. These visible-blind self-powered UV photodetectors exhibit high sensitivity and high-speed photoresponse. Compared with photodetectors based on bare TiO2 nanorod arrays, TiO2 nano-branched arrays show drastically improved photodetecting performance as photoanodes. The photosensitivity increases from 0.03 to 0.22 A W(-1) when optimized nano-branched TiO2 arrays are used, corresponding to an incident photon-to-current conversion efficiency higher than 77%. The UV photodetectors also exhibit excellent spectral selectivity and fast response (0.05 s decay time). The improved performance is attributed to a markedly enlarged TiO2/electrolyte contact area and good electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunk.

18.
Curr Mol Med ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38178660

RESUMO

BACKGROUND: Neuroblastoma (NB) is one of the most common pediatric solid tumors. Emerging evidence has indicated that ADGRL4 can act as a master regulator of tumor progression. In addition, it is well documented that the ERK/STAT3 signaling pathway can promote the proliferation, EMT, angiogenesis, and metastasis in tumors. The current study was formulated to elucidate the exact role of ADGRL4 in the malignant behaviors of NB cells and to investigate the intrinsic mechanism. METHODS: In this work, expression differences of ADGRL4 in human NB cell lines and HUVECs were assessed via RT-qPCR and western blot analysis. For functional experiments, sh-ADGRL4 was transfected into SK-N-SH cells to generate ADGRL4 knockdown stable cell line. Moreover, ADGRL4 knockdown stable SK-N-SH cells were treated with LM22B-10 (an ERK activator) for rescue experiments. CCK-8 colony formation determined NB cells' growth, migration, invasion, wound healing, and transwell assays. Meanwhile, proliferation-, metastasis- and EMT- associated proteins were also detected. Additionally, a tube formation assay was employed to evaluate in vitro angiogenesis. VM-cadherin, the marker of angiogenesis, was assessed using immunofluorescence staining. RESULTS: Data showed notably upregulated ADGRL4 in NB cells, especially in SK-NSH cells. ADGRL4 knockdown inhibited NB cell growth, migration, invasion, EMT, and in vitro angiogenesis. ADGRL4 knockdown inactivated ERK/STAT3 signaling pathway. Activation of the ERK/STAT3 signaling pathway partially rescued the tumor suppression effects of ADGRL4 knockdown on NB cells. CONCLUSION: To conclude, the downregulation of ADGRL4 may inhibit cell growth, aggressiveness, EMT, and angiogenesis in NB by inactivating the ERK/STAT3 signaling pathway.

19.
Front Pharmacol ; 15: 1358735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523635

RESUMO

Objective: We conducted a systematic review to assess the advantages and disadvantages of levosimendan in patients with sepsis compared with placebo, milrinone, and dobutamine and to explore the clinical efficacy of different concentrations of levosimendan. Methods: PubMed, Web of Science, Cochrane Library, Embase, CNKI, Wanfang data, VIP, and CBM databases were searched using such keywords as simendan, levosimendan, and sepsis. The search time was from the establishment of the database to July 2023. Two researchers were responsible for literature screening and data collection respectively. After the risk of bias in the included studies was evaluated, network meta-analysis was performed using R software gemtc and rjags package. Results: Thirty-two randomized controlled trials (RCTs) were included in the network meta-analysis. Meta-analysis results showed that while levosimendan significantly improved CI levels at either 0.1 µg/kg/min (mean difference [MD] [95%CrI] = 0.41 [-0.43, 1.4]) or 0.2 µg/kg/min (MD [95%CrI] =0.54 [0.12, 0.99]). Levosimendan, at either 0.075 µg/kg/min (MD [95% CrI] =0.033 [-0.75, 0.82]) or 0.2 µg/kg/min (MD [95% CrI] = -0.014 [-0.26, 0.23]), had no significant advantage in improving Lac levels. Levosimendan, at either 0.1 µg/kg/min (RR [95% CrI] = 0.99 [0.73, 1.3]) or 0.2 µg/kg/min (RR [95% CrI] = 1.0 [0.88, 1.2]), did not have a significant advantage in reducing mortality. Conclusion: The existing evidence suggests that levosimendan can significantly improve CI and lactate levels in patients with sepsis, and levosimendan at 0.1 µg/kg/min might be the optimal dose. Unfortunately, all interventions in this study failed to reduce the 28-day mortality. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023441220.

20.
J Phys Chem Lett ; 15(17): 4694-4704, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38656198

RESUMO

Batteries with intercalation-conversion-type electrodes tend to achieve high-capacity storage, but the complicated reaction process often suffers from confusing electrochemical mechanisms. Here, we reinterpreted the essential issue about the potential of the conversion reaction and whether there is an intercalation reaction in a lithium/sodium-ion battery (LIB/SIB) with the FeP anode based on the evolution of the magnetic phase. Especially, the ever-present intercalation process in a large voltage range followed by the conversion reaction with extremely low potential was confirmed in FeP LIB, while it is mainly the conversion reaction for the sodium storage mechanism in FeP SIB. The insufficient conversion reaction profoundly limits the actual capacity to the expectedly respectable value. Accordingly, a graphene oxide modification strategy was proposed to increase the reversible capacity of FeP LIB/SIB by 99% and 132%, respectively. The results facilitate the development of anode materials with a high capacity and low operating potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA