Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; : e202402959, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367668

RESUMO

The cyclization of heteroatom-functionalized alkynes induced by d6-transition-metal centers has traditionally been associated with the vinylidene pathway. However, recent evidence suggests that d6-transition-metal centers can also activate alkynes through non-vinylidene pathways. In this study, we conducted a comprehensive experimental and theoretical investigation into the reactions between the Ru(II) complex [Ru([9]aneS3)(bpy)(OH2)]2+ and 2-alkynylanilines. Our study revealed that the selectivity between the vinylidene and non-vinylidene pathways can be tuned by reaction temperature, substrate, and solvent polarity. This strategic control allows for the preferential formation of either C2- or C3-metalated indole zwitterion complexes. Additionally, we identified a rare decyclization mechanism that enables the conversion of C2-metalated indoles to C3-metalated indoles, underscoring the significance of product stability in these pathways. Overall, this work demonstrates practical approaches to control the preference between vinylidene and non-vinylidene pathways, which is crucial for the design of new catalysts and metalated heterocyclic complexes.

2.
Molecules ; 27(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35268810

RESUMO

Mononuclear and dinuclear Ru(II) complexes cis-[Ru(κ2-dppm)(bpy)Cl2] (1), cis-[Ru(κ2-dppe)(bpy)Cl2] (2) and [Ru2(bpy)2(µ-dpam)2(µ-Cl)2](Cl)2 ([3](Cl)2) were prepared from the reactions between cis(Cl), cis(S)-[Ru(bpy)(dmso-S)2Cl2] and diphosphine/diarsine ligands (bpy = 2,2'-bipyridine; dppm = 1,1-bis(diphenylphosphino)methane; dppe = 1,2-bis(diphenylphosphino)ethane; dpam = 1,1-bis(diphenylarsino)methane). While methoxy-substituted ruthenafuran [Ru(bpy)(κ2-dppe)(C^O)]+ ([7]+; C^O = anionic bidentate [C(OMe)CHC(Ph)O]- chelate) was obtained as the only product in the reaction between 2 and phenyl ynone HC≡C(C=O)Ph in MeOH, replacing 2 with 1 led to the formation of both methoxy-substituted ruthenafuran [Ru(bpy)(κ2-dppm)(C^O)]+ ([4]+) and phosphonium-ring-fused bicyclic ruthenafuran [Ru(bpy)(P^C^O)Cl]+ ([5]+; P^C^O = neutral tridentate [(Ph)2PCH2P(Ph)2CCHC(Ph)O] chelate). All of these aforementioned metallafuran complexes were derived from Ru(II)-vinylidene intermediates. The potential applications of these metallafuran complexes as anticancer agents were evaluated by in vitro cytotoxicity studies against cervical carcinoma (HeLa) cancer cell line. All the ruthenafuran complexes were found to be one order of magnitude more cytotoxic than cisplatin, which is one of the metal-based anticancer agents being widely used currently.


Assuntos
Fosfinas , Rutênio , Ligantes , Metano , Fosfinas/farmacologia , Rutênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA