Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Diabetes ; 15(4): 654-663, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38680696

RESUMO

BACKGROUND: Neovascular glaucoma (NVG) is likely to occur after pars plana vitrectomy (PPV) for diabetic retinopathy (DR) in some patients, thus reducing the expected benefit. Understanding the risk factors for NVG occurrence and building effective risk prediction models are currently required for clinical research. AIM: To develop a visual risk profile model to explore factors influencing DR after surgery. METHODS: We retrospectively selected 151 patients with DR undergoing PPV. The patients were divided into the NVG (NVG occurrence) and No-NVG (No NVG occurrence) groups according to the occurrence of NVG within 6 months after surgery. Independent risk factors for postoperative NVG were screened by logistic regression. A nomogram prediction model was established using R software, and the model's prediction accuracy was verified internally and externally, involving the receiver operator characteristic curve and correction curve. RESULTS: After importing the data into a logistic regression model, we concluded that a posterior capsular defect, preoperative vascular endothelial growth factor ≥ 302.90 pg/mL, glycosylated hemoglobin ≥ 9.05%, aqueous fluid interleukin 6 (IL-6) ≥ 53.27 pg/mL, and aqueous fluid IL-10 ≥ 9.11 pg/mL were independent risk factors for postoperative NVG in patients with DR (P < 0.05). A nomogram model was established based on the aforementioned independent risk factors, and a computer simulation repeated sampling method was used to internally and externally verify the nomogram model. The area under the curve (AUC), sensitivity, and specificity of the model were 0.962 [95% confidence interval (95%CI): 0.932-0.991], 91.5%, and 82.3%, respectively. The AUC, sensitivity, and specificity of the external validation were 0.878 (95%CI: 0.746-0.982), 66.7%, and 95.7%, respectively. CONCLUSION: A nomogram constructed based on the risk factors for postoperative NVG in patients with DR has a high prediction accuracy. This study can help formulate relevant preventive and treatment measures.

2.
Am J Chin Med ; 52(3): 841-864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716618

RESUMO

A high-glucose environment is involved in the progression of diabetes mellitus (DM). This study aims to explore the regulatory effects of quercetin (QUE) on autophagy and apoptosis after myocardial injury in rats with DM. The type 2 DM rat models were constructed using low-dose streptozotocin (STZ) treatment combined with a high-carbohydrate (HC) diet in vivo. Compared with the control group, the body weight was decreased, whereas blood pressure, blood glucose, and the LVW/BW ratio were increased in the diabetic group. The results showed that the myocardial fibers were disordered in the diabetic group. Moreover, we found that the myocardial collagen fibers, PAS-positive cells, and apoptosis were increased, whereas the mitochondrial structure was destroyed and autophagic vacuoles were significantly reduced in the diabetic group compared with the control group. The expression levels of autophagy-related proteins LC3 and Beclin1 were decreased, whereas the expression levels of P62, Caspae-3, and Bax/Bcl-2 were increased in the diabetic group in vitro and in vivo. Moreover, QUE treatment alleviated the cellular oxidative stress reaction under high-glucose environments. The results of immunoprecipitation (IP) showed that the autophagy protein Beclin1 was bound to Bcl-2, and the binding capacity increased in the HG group, whereas it decreased after QUE treatment, suggesting that QUE inhibited the binding capacity between Beclin1 and Bcl-2, thus leading to the preservation of Beclin1-induced autophagy. In addition, the blood pressure, blood glucose, and cardiac function of rats were improved following QUE treatment. In conclusion, QUE suppressed diabetic myocardial injury and ameliorated cardiac function by regulating myocardial autophagy and inhibition of apoptosis in diabetes through the AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Autofagia , Diabetes Mellitus Experimental , Quercetina , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Quercetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Ratos , Modelos Animais de Doenças , Miocárdio/metabolismo , Miocárdio/patologia , Estreptozocina , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/prevenção & controle , Fitoterapia , Proteína Beclina-1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA