RESUMO
Excessive reactive oxygen species (ROS) can cause oxidative stress and consequently cell injury contributing to a wide range of diseases. Addressing the critical gaps in our understanding of the adaptive molecular events downstream ROS provocation holds promise for the identification of druggable metabolic vulnerabilities. Here, we unveil a direct molecular link between the activity of two estrogen-related receptor (ERR) isoforms and the control of glutamine utilization and glutathione antioxidant production. ERRα down-regulation restricts glutamine entry into the TCA cycle, while ERRγ up-regulation promotes glutamine-driven glutathione production. Notably, we identify increased ERRγ expression/activation as a hallmark of oxidative stress triggered by mitochondrial disruption or chemotherapy. Enhanced tumor antioxidant capacity is an underlying feature of human breast cancer (BCa) patients that respond poorly to treatment. We demonstrate that pharmacological inhibition of ERRγ with the selective inverse agonist GSK5182 increases antitumor efficacy of the chemotherapeutic paclitaxel on poor outcome BCa tumor organoids. Our findings thus underscore the ERRs as novel redox sensors and effectors of a ROS defense program and highlight the potential therapeutic advantage of exploiting ERRγ inhibitors for the treatment of BCa and other diseases where oxidative stress plays a central role.
Assuntos
Neoplasias da Mama/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Antineoplásicos/farmacologia , Técnicas Biossensoriais , Neoplasias da Mama/tratamento farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Paclitaxel/farmacologia , Receptores de Estrogênio/genética , Rotenona/farmacologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Receptor ERRalfa Relacionado ao EstrogênioRESUMO
Daphnia produce genetically identical males and females; their sex is determined by environmental conditions. Recently, Kato et al. identified isoform switching events in Daphnia as a gene regulatory mechanism for sex-specific development. This finding uncovers the impact of alternative usage of gene isoforms on this extreme phenotypic plasticity trait.
Assuntos
Daphnia , Processos de Determinação Sexual , Animais , Processos de Determinação Sexual/genética , Daphnia/genética , Feminino , Masculino , Meio Ambiente , Processamento Alternativo/genéticaRESUMO
The NAC transcription factor ripening inducing factor (RIF) was previously reported to be necessary for the ripening of octoploid strawberry (Fragaria × ananassa) fruit, but the mechanistic basis of RIF-mediated transcriptional regulation and how RIF activity is modulated remains elusive. Here, we show that FvRIF in diploid strawberry, Fragaria vesca, is a key regulator in the control of fruit ripening and that knockout mutations of FvRIF result in a complete block of fruit ripening. DNA affinity purification sequencing coupled with transcriptome deep sequencing suggests that 2,080 genes are direct targets of FvRIF-mediated regulation, including those related to various aspects of fruit ripening. We provide evidence that FvRIF modulates anthocyanin biosynthesis and fruit softening by directly regulating the related core genes. Moreover, we demonstrate that FvRIF interacts with and serves as a substrate of MAP kinase 6 (FvMAPK6), which regulates the transcriptional activation function of FvRIF by phosphorylating FvRIF at Thr-310. Our findings uncover the FvRIF-mediated transcriptional regulatory network in controlling strawberry fruit ripening and highlight the physiological significance of phosphorylation modification on FvRIF activity in ripening.
Assuntos
Fragaria , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Properties that make organisms ideal laboratory models in developmental and medical research are often the ones that also make them less representative of wild relatives. The waterflea Daphnia magna is an exception, by both sharing many properties with established laboratory models and being a keystone species, a sentinel species for assessing water quality, an indicator of environmental change and an established ecotoxicology model. Yet, Daphnia's full potential has not been fully exploited because of the challenges associated with assembling and annotating its gene-rich genome. Here, we present the first hologenome of Daphnia magna, consisting of a chromosomal-level assembly of the D. magna genome and the draft assembly of its metagenome. By sequencing and mapping transcriptomes from exposures to environmental conditions and from developmental morphological landmarks, we expand the previously annotates gene set for this species. We also provide evidence for the potential role of gene-body DNA-methylation as a mutagen mediating genome evolution. For the first time, our study shows that the gut microbes provide resistance to commonly used antibiotics and virulence factors, potentially mediating Daphnia's environmental-driven rapid evolution. Key findings in this study improve our understanding of the contribution of DNA methylation and gut microbiota to genome evolution in response to rapidly changing environments.
RESUMO
The Sox gene family, a collection of transcription factors widely distributed throughout the animal kingdom, plays a crucial role in numerous developmental processes. Echinoderms occupy a pivotal position in many research fields, such as neuroscience, sex determination and differentiation, and embryonic development. However, to date, no comprehensive study has been conducted to characterize and analyze Sox genes in echinoderms. In the present study, the evolution and expression of Sox family genes across 11 echinoderms were analyzed using bioinformatics methods. The results revealed a total of 70 Sox genes, with counts ranging from 5 to 8 across different echinoderms. Phylogenetic analysis revealed that the identified Sox genes could be categorized into seven distinct classes: the SoxB1 class, SoxB2 class, SoxC class, SoxD class, SoxE class, SoxF class and SoxH class. Notably, the SoxB1, SoxB2, and SoxF genes were ubiquitously present in all the echinoderms studied, which suggests that these genes may be conserved in echinoderms. The spatiotemporal expression patterns observed for Sox genes in the three echinoderms indicated that various Sox members perform distinct functional roles. Notably, SoxB1 is likely involved in echinoderm ovary development, while SoxH may play a crucial role in testis development in starfish and sea cucumber. In general, the present investigation provides a molecular foundation for exploring the Sox gene in echinoderms, providing a valuable resource for future phylogenetic and genomic studies.
Assuntos
Equinodermos , Família Multigênica , Filogenia , Fatores de Transcrição SOX , Animais , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Equinodermos/genética , Perfilação da Expressão Gênica , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Biologia Computacional/métodosRESUMO
The hydrolysis of imines has long been assumed to be their main atmospheric fate, based on early studies in the field of organic chemistry. However, the hydrolysis mechanism and kinetics of atmospheric imines remain unclear. Here, an advanced Born-Oppenheimer molecular dynamics method was employed to investigate the noncatalyzed hydrolysis mechanism and kinetics at the air-water interface by selecting CH2NH as a model molecule. The results indicate that CH2NH exhibits a pronounced surface preference. The noncatalyzed hydrolysis of CH2NH follows a unique two-step reaction mechanism involving first proton transfer and then OH- transfer through the water bridge at the air-water interface, in contrast to the traditional one-step mechanism. The calculated reaction rate for the rate-determining step is 3.32 × 105 s-1, which is 2 orders of magnitude greater than that of the bulk phase. In addition, the involvement of the interfacial electric field further enhances the reaction rate by approximately 3 orders of magnitude. The noncatalyzed hydrolysis rate at both the air-water interface and the bulk phase is higher than that of the possible acid-catalyzed one, clarifying noncatalyzed hydrolysis as the dominant mechanism for CH2NH. This study elucidates that the noncatalyzed hydrolysis of atmospheric imines is feasible at the air-water interface and that the revealed unique two-step hydrolysis mechanism has significant implications in atmospheric and water environmental chemistry.
RESUMO
BACKGROUND AND AIMS: HCC is closely associated with inflammation and immune modulation, and combined chemotherapy with other strategies is under extensive investigation to achieve better efficacy. HCC is accompanied by zinc (Zn) deficiency. This study aims to understand how Zn could affect macrophage function and its application for HCC therapy. APPROACH AND RESULTS: Zn 2+ and the Zn transporter 1 (ZNT1, solute carrier family 30 member 1) were markedly reduced in intrahepatic macrophages from patients with HCC and from mouse liver tumors. Lower ZNT1 expression was associated with higher IL-6 production and shorter survival time in patients with HCC. Critically, ZNT1 regulated endosomal Zn 2+ levels for endocytosis of toll-like receptor 4 and programmed cell death ligand 1, thereby decreasing macrophage-induced inflammation and immunosuppression to protect from liver tumors. Myeloid-specific deletion of ZNT1 in mice increased chronic inflammation, liver fibrosis, tumor numbers, and size. Notably, Zn supplementation could reduce inflammation and surface programmed cell death ligand 1 expression in macrophages with the increased CD8 + T cell cytotoxicity, which synergized the antitumor efficacy of Sorafenib/Lenvatinib. CONCLUSIONS: Our study proposes a new concept that ZNT1 and Zn regulate endosome endocytosis to maintain surface receptors, and Zn supplements might be synergized with chemotherapy to treat inflammation-associated tumors, especially those containing programmed cell death ligand 1 + myeloid cells.
RESUMO
Assembling multi-anionic groups is conducive to utilizing respective advantage to achieve the enhancement of optical performance. Two new hydroxyfluorooxoborates, Ama2-Rb2B3O3F4(OH) and K8Cs2B15O14(OH)7F20 â H2O with [B3O3F4(OH)] six-membered rings were synthesized for the first time. The title compounds exhibit short ultraviolet cutoff edges (<200â nm) and K8Cs2B15O14(OH)7F20 â H2O possesses a moderate experimental refractive index difference of 0.051@546â nm.
RESUMO
Excessive NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation has an important function in the pathogenesis of Sjögren's syndrome (SS). Increased and dysfunctional myeloid-derived suppressor cells (MDSCs) promoted SS. However, NLRP3 inflammasome activation of MDSCs in SS and its regulated components are unclear. Splenic MDSCs were purified by immunomagnetic beads and cultured. Western blot was used to assess NLRP3 inflammasomes. Interleukin-1ß (IL-1ß) and IL-18 were measured using enzyme-linked immunosorbent assay. Here we showed that the NLRP3 inflammasome was activated in non-obese diabetic (NOD) mice with SS-like manifestations. We found that NLRP3 inflammasome activation was augmented in MDSCs of SS mice and NLRP3 inflammasome activation was suppressed in IL-27-deficient NOD mice. Consistent with findings of SS mice in vivo, we observed that NLRP3 inflammasome activation by adenosine triphosphate and lipopolysaccharide was remarkably intensified in MDSCs with IL-27 treatment in vitro. Collectively, our data highlighted that IL-27 regulates NLRP3 inflammasome activation of MDSCs in experimental SS.
Assuntos
Interleucina-27 , Células Supressoras Mieloides , Síndrome de Sjogren , Animais , Camundongos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
Chronic inflammation is one of the central drivers in the development of dry eye disease (DED), in which pyroptosis induced by the NLRP3/caspase-1/gasdermin D (GSDMD) pathway plays a key role. This pathway has become a major target for the treatment of a variety of inflammatory disorders. Oridonin (Ori) is a naturally occurring substance with anti-inflammatory properties obtained from Rabdosia rubescens. Whether Ori can exert an anti-inflammatory effect on DED, and its anti-inflammatory mechanism of action, are still unknown. This experiment is intended to investigate the impact of Ori on the hyperosmolarity-induced NLRP3/caspase-1/GSDMD pyroptosis pathway in immortalized human corneal epithelial (HCE-T) cells, as well as its efficacy and mechanism of action on ocular surface injury in DED mice. Our study showed that Ori could inhibit hyperosmotic-induced pyroptosis through the NLRP3/caspase-1/GSDMD pathway in HCE-T cells, and similarly, Ori inhibited the expression of this pathway in DED mice. Moreover, Ori was protective against hyperosmolarity-induced HCE-T cell damage. In addition, we found that the morphology and number of HCE-T cells were altered under culture conditions of various osmolarities. With increasing osmolarity, the proliferation, migration, and healing ability of HCE-T cells decreased significantly, and the expression of N-GSDMD was elevated. In a mouse model of DED, Ori application inhibited the expression of the NLRP3/caspase-1/GSDMD pyroptosis pathway, improved DED signs and injury, decreased corneal sodium fluorescein staining scores, and increased tear volume. Thus, our study suggests that Ori has potential applications for the treatment of DED, provides potential novel therapeutic approaches to treat DED, and provides a theoretical foundation for treating DED using Ori.
Assuntos
Caspase 1 , Modelos Animais de Doenças , Diterpenos do Tipo Caurano , Síndromes do Olho Seco , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Piroptose , Piroptose/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Camundongos , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Caspase 1/metabolismo , Humanos , Diterpenos do Tipo Caurano/farmacologia , Proteínas de Ligação a Fosfato/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais , Lágrimas/metabolismo , Células Cultivadas , Western Blotting , GasderminasRESUMO
BACKGROUND: Over the past several decades, more research focuses have been made on the inflammation/immune hypothesis of schizophrenia. Building upon synaptic plasticity hypothesis, inflammation may contribute the underlying pathophysiology of schizophrenia. Yet, pinpointing the specific inflammatory agents responsible for schizophrenia remains a complex challenge, mainly due to medication and metabolic status. Multiple lines of evidence point to a wide-spread genetic association across genome underlying the phenotypic variations of schizophrenia. METHOD: We collected the latest genome-wide association analysis (GWAS) summary data of schizophrenia, cytokines, and longitudinal change of brain. We utilized the omnigenic model which takes into account all genomic SNPs included in the GWAS of trait, instead of traditional Mendelian randomization (MR) methods. We conducted two round MR to investigate the inflammatory triggers of schizophrenia and the resulting longitudinal changes in the brain. RESULTS: We identified seven inflammation markers linked to schizophrenia onset, which all passed the Bonferroni correction for multiple comparisons (bNGF, GROA(CXCL1), IL-8, M-CSF, MCP-3 (CCL7), TNF-ß, CRP). Moreover, CRP were found to significantly influence the linear rate of brain morphology changes, predominantly in the white matter of the cerebrum and cerebellum. CONCLUSION: With an omnigenic approach, our study sheds light on the immune pathology of schizophrenia. Although these findings need confirmation from future studies employing different methodologies, our work provides substantial evidence that pervasive, low-level neuroinflammation may play a pivotal role in schizophrenia, potentially leading to notable longitudinal changes in brain morphology.
Assuntos
Encéfalo , Estudo de Associação Genômica Ampla , Inflamação , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/patologia , Inflamação/genética , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Citocinas/genética , Citocinas/metabolismo , Imageamento por Ressonância Magnética , Substância Branca/patologia , Substância Branca/diagnóstico por imagemRESUMO
BACKGROUND: Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear. METHODS: This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design. RESULTS: Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups. CONCLUSIONS: Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.
RESUMO
BACKGROUND: Although dopaminergic disturbances are well-known in schizophrenia, the understanding of dopamine-related brain dynamics remains limited. This study investigates the dynamic coactivation patterns (CAPs) associated with the substantia nigra (SN), a key dopaminergic nucleus, in first-episode treatment-naïve patients with schizophrenia (FES). METHODS: Resting-state fMRI data were collected from 84 FES and 94 healthy controls (HCs). Frame-wise clustering was implemented to generate CAPs related to SN activation or deactivation. Connectome features of each CAP were derived using an edge-centric method. The occurrence for each CAP and the balance ratio for antagonistic CAPs were calculated and compared between two groups, and correlations between temporal dynamic metrics and symptom burdens were explored. RESULTS: Functional reconfigurations in CAPs exhibited significant differences between the activation and deactivation states of SN. During SN activation, FES more frequently recruited a CAP characterized by activated default network, language network, control network, and the caudate, compared to HCs (F = 8.54, FDR-p = 0.030). Moreover, FES displayed a tilted balance towards a CAP featuring SN-coactivation with the control network, caudate, and thalamus, as opposed to its antagonistic CAP (F = 7.48, FDR-p = 0.030). During SN deactivation, FES exhibited increased recruitment of a CAP with activated visual and dorsal attention networks but decreased recruitment of its opposing CAP (F = 6.58, FDR-p = 0.034). CONCLUSION: Our results suggest that neuroregulatory dysfunction in dopaminergic pathways involving SN potentially mediates aberrant time-varying functional reorganizations in schizophrenia. This finding enriches the dopamine hypothesis of schizophrenia from the perspective of brain dynamics.
Assuntos
Conectoma , Imageamento por Ressonância Magnética , Esquizofrenia , Substância Negra , Humanos , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Substância Negra/fisiopatologia , Substância Negra/diagnóstico por imagem , Feminino , Masculino , Adulto , Adulto Jovem , Estudos de Casos e ControlesRESUMO
Benchmark dose (BMD) modeling estimates the dose of a chemical that causes a perturbation from baseline. Transcriptional BMDs have been shown to be relatively consistent with apical end point BMDs, opening the door to using molecular BMDs to derive human health-based guidance values for chemical exposure. Metabolomics measures the responses of small-molecule endogenous metabolites to chemical exposure, complementing transcriptomics by characterizing downstream molecular phenotypes that are more closely associated with apical end points. The aim of this study was to apply BMD modeling to in vivo metabolomics data, to compare metabolic BMDs to both transcriptional and apical end point BMDs. This builds upon our previous application of transcriptomics and BMD modeling to a 5-day rat study of triphenyl phosphate (TPhP), applying metabolomics to the same archived tissues. Specifically, liver from rats exposed to five doses of TPhP was investigated using liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance spectroscopy-based metabolomics. Following the application of BMDExpress2 software, 2903 endogenous metabolic features yielded viable dose-response models, confirming a perturbation to the liver metabolome. Metabolic BMD estimates were similarly sensitive to transcriptional BMDs, and more sensitive than both clinical chemistry and apical end point BMDs. Pathway analysis of the multiomics data sets revealed a major effect of TPhP exposure on cholesterol (and downstream) pathways, consistent with clinical chemistry measurements. Additionally, the transcriptomics data indicated that TPhP activated xenobiotic metabolism pathways, which was confirmed by using the underexploited capability of metabolomics to detect xenobiotic-related compounds. Eleven biotransformation products of TPhP were discovered, and their levels were highly correlated with multiple xenobiotic metabolism genes. This work provides a case study showing how metabolomics and transcriptomics can estimate mechanistically anchored points-of-departure. Furthermore, the study demonstrates how metabolomics can also discover biotransformation products, which could be of value within a regulatory setting, for example, as an enhancement of OECD Test Guideline 417 (toxicokinetics).
Assuntos
Biotransformação , Fígado , Metabolômica , Animais , Ratos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Relação Dose-Resposta a Droga , Benchmarking , Organofosfatos/toxicidade , Organofosfatos/metabolismo , Ratos Sprague-DawleyRESUMO
The locus coeruleus (LC), enriched in vesicular glutamate transporter 2 (VGlut2) neurons, is a potential homeostasis-regulating hub. However, the identity of melanocortin-4 receptor (MC4R) neurons in the paraventricular nucleus (PVN) of the hypothalamus, PVNVGlut2::MC4R and LCVGlut2::MC4R regulation of body weight, and axonal projections of LCVGlut2 neurons remain unclear. Conditional knockout of MC4R in chimeric mice was used to confirm the effects of VGlut2. Interscapular brown adipose tissue was injected with pseudorabies virus to study the central nervous system projections. We mapped the LCVGlut2 circuitry. Based on the Cre-LoxP recombination system, specific knockdown of MC4R in VGlut2 neurons resulted in weight gain in chimeric mice. Adeno-associated virus-mediated knockdown of MC4R expression in the PVN and LC had potential superimposed effects on weight gain, demonstrating the importance of VGlut2 neurons. Unlike these wide-ranging efferent projections, the PVN, hypothalamic arcuate nucleus, supraoptic nucleus of the lateral olfactory tegmental nuclei, and nucleus tractus solitarius send excitatory projections to LCVGlut2 neurons. The PVN â LC glutamatergic MC4R long-term neural circuit positively affected weight management and could help treat obesity.
Assuntos
Núcleo Hipotalâmico Paraventricular , Receptor Tipo 4 de Melanocortina , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Peso Corporal , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios/metabolismo , Aumento de PesoRESUMO
Across the major psychiatric disorders (MPDs), a shared disruption in brain physiology is suspected. Here we investigate the neural variability at rest, a well-established behavior-relevant marker of brain function, and probe its basis in gene expression and neurotransmitter receptor profiles across the MPDs. We recruited 219 healthy controls and 279 patients with schizophrenia, major depressive disorder, or bipolar disorders (manic or depressive state). The standard deviation of blood oxygenation level-dependent signal (SDBOLD) obtained from resting-state fMRI was used to characterize neural variability. Transdiagnostic disruptions in SDBOLD patterns and their relationships with clinical symptoms and cognitive functions were tested by partial least-squares correlation. Moving beyond the clinical sample, spatial correlations between the observed patterns of SDBOLD disruption and postmortem gene expressions, Neurosynth meta-analytic cognitive functions, and neurotransmitter receptor profiles were estimated. Two transdiagnostic patterns of disrupted SDBOLD were discovered. Pattern 1 is exhibited in all diagnostic groups and is most pronounced in schizophrenia, characterized by higher SDBOLD in the language/auditory networks but lower SDBOLD in the default mode/sensorimotor networks. In comparison, pattern 2 is only exhibited in unipolar and bipolar depression, characterized by higher SDBOLD in the default mode/salience networks but lower SDBOLD in the sensorimotor network. The expression of pattern 1 related to the severity of clinical symptoms and cognitive deficits across MPDs. The two disrupted patterns had distinct spatial correlations with gene expressions (e.g., neuronal projections/cellular processes), meta-analytic cognitive functions (e.g., language/memory), and neurotransmitter receptor expression profiles (e.g., D2/serotonin/opioid receptors). In conclusion, neural variability is a potential transdiagnostic biomarker of MPDs with a substantial amount of its spatial distribution explained by gene expressions and neurotransmitter receptor profiles. The pathophysiology of MPDs can be traced through the measures of neural variability at rest, with varying clinical-cognitive profiles arising from differential spatial patterns of aberrant variability.
RESUMO
Amyloid-like fibrils have a relatively high specific surface area, which makes them suitable as absorbents. In this study, we prepared absorbent composite aerogels from whey protein isolate fibril (WPIF) and calcium alginate (CA). The impact of protein fibrillation time (4-24 h) on the adsorption properties of these aerogels was assessed, as this influences the nature of the WPIFs formed. Fourier transform infrared spectroscopy analysis indicated that hydrogen bonding, hydrophobic interactions, and electrostatic interactions were the main molecular interactions in the composite aerogels. Then, the adsorption properties of the aerogels were investigated using crystal violet as a model compound. The adsorption properties of all composite aerogels were significantly improved compared to CA aerogels, which was mainly attributed to the numerous functional groups of the surfaces of the WPIFs, as well as the rougher surface topology of the composite aerogels. The adsorption capacity of the composite aerogels first increased and then decreased with increasing fibrillation time, with 8 h fibrillation leading to the largest adsorption capacity (1886.11 mg/g). Thioflavin T fluorescence, atomic force microscopy, light extinction, average particle size, and zeta potential analysis indicated that the high fibril content, mature fibril morphology, large number of available functional groups on the surface, and relatively low zeta potential of WPIF8 might be the main reasons. Adsorption kinetics and isothermal adsorption profile analysis suggested that monolayer adsorption occurred through chemical adsorption processes. The edible aerogel with high adsorption properties developed in this work has potential application in food and biomedical fields.
RESUMO
Potassium carbonate-catalyzed (3 + 2) cycloaddition reaction between N-2,2,2-trifluoroethylisatin ketimines and azodicarboxylates has been developed, constructing a series of novel N-heterocycle infused spirooxindoles in good to excellent yields (up to 98%) under milder conditions. The presence of both biologically active oxindole and trifluoromethyl-1,2,4-triazoline moieties in these novel spirocyclic compounds would provide new lead structures in the discovery of heterocyclic compounds with potential pharmaceutical activities.
RESUMO
RATIONALE: In recent years, ephedrine psychoactive substances have attracted much attention due to their prevalence in water bodies and potential threat to aquatic ecosystems. Psychoactive substances have been considered as a new type of environmental pollutant due to their unpredictable potential risks to the behavior and nervous system of non-target organisms. A rapid, sensitive, selective, and robust method for the quantification of three ephedrine psychoactive substances in sewage is needed. METHODS: An ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of three ephedrine psychoactive substances in water. The optimal processing conditions were determined by optimizing the chromatography-mass spectrometry and solid-phase extraction (SPE) conditions (e.g., the SPE column, sample pH, washing, and elution), and the treatment conditions were determined; this was achieved via positive ion scanning in multiple reaction monitoring mode. Poly-Sery MCX was selected as the extraction column, with samples loaded at pH 3. And 4-mL solution of 2% formic acid (FA) aqueous solution was used as the eluent; the target compounds were eluted with 5 mL of 5% NH4OH in acetonitrile (ACN) solution. The best results were obtained when the residue was resolubulization in ACN after nitrogen evaporation. RESULTS: The developed UPLC-MS/MS showed a good linear relationship in the range of 0-50.00 µg/L, with determination coefficients (R2) greater than 0.9990. The detection limit and quantitation limit were 0.05-0.10 and 0.20-0.50 µg/L, respectively. Recovery rates of the target compounds in blank sewage at three different concentrations ranged from 92.37% to 106.31%, with relative standard deviations (RSDs) of 0.77%-4.83% (n = 7). CONCLUSIONS: This method has been successfully applied to the analysis of surface water and domestic sewage, and the samples were processed stably, indicating that the method is practical for the determination of ephedrine psychoactive drugs in water bodies.
Assuntos
Efedrina , Limite de Detecção , Psicotrópicos , Esgotos , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Psicotrópicos/análise , Psicotrópicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Esgotos/química , Esgotos/análise , Efedrina/análise , Efedrina/química , Reprodutibilidade dos TestesRESUMO
BACKGROUND: There are very limited reports on anti-metabolic glutamate receptor5 (mGluR5) encephalitis, especially lacking of pediatric research. The disease was mostly accompanied by tumors, mainly Hodgkin's lymphoma. No reports of other tumors, such as gangliocytoma have been reported to associate with anti-mGluR5 encephalitis so far. CASE PRESENTATION AND LITERATURE REVIEWS: We reported a case of a 12-year-old boy with anti-mGluR5 encephalitis complicated with gangliocytoma. The patient suffered from mental disorders including auditory hallucination, and sleep disorders. His cranial magnetic resonance imaging (MRI) showed an abnormality in the right insular lobe. Autoimmune encephalitis antibodies testing was positive for mGluR5 IgG antibody both in cerebrospinal fluid and serum (1:3.2, 1:100 respectively). Abdominal CT indicated a mass in left retroperitoneal confirmed with gangliocytoma via pathology. The patient underwent resection of gangliocytoma. After first-line immunotherapy (glucocorticoid, gamma globulin), his condition was improved. Furthermore, we provide a summary of 6 pediatric cases of Anti-mGluR5 encephalitis. Most of them complicated with Hodgkin's lymphoma, except the case currently reported comorbid with gangliocytoma. The curative effect is satisfactory. CONCLUSIONS: We report the first patient with anti-mGlur5 encephalitis complicated with gangliocytoma. It suggests that in addition to paying attention to the common lymphoma associated with anti-mGlur5 encephalitis, we should also screen the possibility of other tumors for early detection of the cause, active treatment and prevention of recurrence.