Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Langmuir ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330279

RESUMO

Secondary hydrate formation or hydrate reformation poses a serious threat to the oil and gas transportation safety and natural gas hydrate exploitation efficiency. The hydrate reformation behaviors in porous media have been widely studied in large simulators due to their importance in traditional industries and new energy resources. However, it is difficult to understand the interfacial effects of hydrate reformation on the surface and in micropores of the porous media via a basic experimental apparatus. In this work, in situ X-ray computed tomography (X-CT) technology is used to detect the period, distribution, volume, and morphology characteristics of secondary hydrate formation during hydrate dissociation under depressurization, thermal stimulation, and the combined conditions. It is found that the secondary hydrate formation is inevitable under any conditions of hydrate dissociation. The secondary hydrate morphology varies among porous, grain-enveloping, grain-cementing, granular, and patchy structures, which are closely correlated to the hydrate reformation region and gas/water saturated conditions during hydrate dissociation. Accordingly, we revealed that the interfacial superheating phenomenon before hydrate dissociation could provide a supercooling condition for hydrate reformation. The gas flow along the interface of pores and inside the liquid water, as well as gas accumulation in noninterconnected pores, would exaggerate the hydrate reformation by increasing the local pore pressure. Meanwhile, the hydrate reformation aggravates the nonuniform distribution of gas hydrates in pores. In order to avoid hydrate reformation during dissociation, we further compared hydrate reformation and dissociation behaviors under three hydrate dissociation conditions. It is revealed that the combination of thermal stimulation and depressurization is an effective method for hydrate dissociation by retarding secondary hydrate formation. This study provides visual evidence and an interaction mechanism between interfacial heat and mass transfer, as well as secondary hydrate formation behaviors, which can be favorable for future quantitative research on secondary hydrate formation in different scales under various dissociation conditions.

2.
Langmuir ; 40(32): 16959-16971, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39078371

RESUMO

A fundamental understanding of the fluid flow mechanism during CH4 hydrate dissociation in nanoscale clayey sediments from the molecular perspective can provide invaluable information for macroscale natural gas hydrate (NGH) exploration. In this work, the fluid flow behaviors of the decomposed gas from CH4 hydrate within clayey nanopores under different temperature conditions are revealed by molecular dynamics (MD) simulation. The simulation results indicate that the key influencing factors of gas-water flow in nanoscale clayey sediments include the diffusion and the random migration of gas molecules. The influencing mechanisms of fluid flow in nanopores are closely related with the temperature conditions. Under a low temperature condition, the gas diffusion process is impeded by the secondary hydrate formation, leading to the decline in gas transport velocity within nanopores. However, it is still noteworthy that the gas-water fluid flow channels are not completely blocked by the occurrence of secondary hydrate. Under a high temperature condition, the significant phenomenon of water migration during gas flow is observed, which can be ascribed to the gas-liquid entrainment effect in nanopores of the clayey sediment. These results may provide valuable implications and fundamental evidence for improving gas production efficiency in future field tests of NGH exploitation in marine sediments.

3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928184

RESUMO

Simple and efficient sample pretreatment methods are important for analysis and detection of chemical warfare agents (CWAs) in environmental and biological samples. Despite many commercial materials or reagents that have been already applied in sample preparation, such as SPE columns, few materials with specificity have been utilized for purification or enrichment. In this study, ionic magnetic mesoporous nanomaterials such as poly(4-VB)@M-MSNs (magnetic mesoporous silicon nanoparticles modified by 4-vinyl benzene sulfonic acid) and Co2+@M-MSNs (magnetic mesoporous silicon nanoparticles modified by cobalt ions) with high absorptivity for ethanol amines (EAs, nitrogen mustard degradation products) and cyanide were successfully synthesized. The special nanomaterials were obtained by modification of magnetic mesoporous particles prepared based on co-precipitation using -SO3H and Co2+. The materials were fully characterized in terms of their composition and structure. The results indicated that poly(4-VB)@M-MSNs or Co2+@M-MSNs had an unambiguous core-shell structure with a BET of 341.7 m2·g-1 and a saturation magnetization intensity of 60.66 emu·g-1 which indicated the good thermal stability. Poly(4-VB)@M-MSNs showed selective adsorption for EAs while the Co2+@M-MSNs were for cyanide, respectively. The adsorption capacity quickly reached the adsorption equilibrium within the 90 s. The saturated adsorption amounts were MDEA = 35.83 mg·g-1, EDEA = 35.00 mg·g-1, TEA = 17.90 mg·g-1 and CN-= 31.48 mg·g-1, respectively. Meanwhile, the adsorption capacities could be maintained at 50-70% after three adsorption-desorption cycles. The adsorption isotherms were confirmed as the Langmuir equation and the Freundlich equation, respectively, and the adsorption mechanism was determined by DFT calculation. The adsorbents were applied for enrichment of targets in actual samples, which showed great potential for the verification of chemical weapons and the destruction of toxic chemicals.


Assuntos
Aminas , Cianetos , Etanol , Cianetos/química , Cianetos/isolamento & purificação , Adsorção , Aminas/química , Etanol/química , Porosidade , Cobalto/química , Nanopartículas de Magnetita/química , Nanoestruturas/química
4.
Chem Res Toxicol ; 36(9): 1549-1559, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37657424

RESUMO

Sulfur mustard [HD; bis-(2-chloroethyl) sulfide] and other analogues are a kind of highly toxic vesicant and have been prohibited by the Organization for the Prohibition of Chemical Weapons (OPCW) since 1997. Exposures to HD could generate several adducts in the plasma and hydrolysis products in the urine, which are widely applied as biomarkers to identify HD exposure in forensic analysis. Several methods have been developed for the detection of related biomarkers. However, most methods are based on complex derivatization, and not enough attention is paid to HD analogues. A modified and convenient analytical method reported herein includes simultaneous incubation and organic solvent extraction. The biomarkers such as thiodiglycol and 1,2-bis (2-hydroxyethylthio) are transferred to HD and 1,2-bis(2-chloroethylthio) ethane via hydrochloric acid at the appropriate temperature. The analytes are analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS) with 2-chloroethyl ethyl sulfide (2-CEES) applied as the internal standard. The interday and intraday study according to FDA rules has been achieved to evaluate the accuracy and precision of the method. The two targets are detected with a good linearity (R2 > 0.99) in the concentration ranges from 5 to 1000 ng/mL and 10 to 1000 ng/mL, with small relative standard deviations (RSD ≤6.62% and RSD ≤6.93%) and favorable recoveries between 90.3 and 107.3% and between 89.4 and 108.7%, respectively. The established method can be used for retrospective detection of sulfur mustards in biological samples and successfully applied in the biomedical proficiency testing organized by the OPCW.


Assuntos
Sulfetos , Espectrometria de Massas em Tandem , Humanos , Estudos Retrospectivos , Cromatografia Gasosa-Espectrometria de Massas , Biomarcadores , Etano
5.
Entropy (Basel) ; 25(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36832645

RESUMO

The swelling characteristics of porous media in the offshore natural gas hydrate reservoir have an important effect on the stability of the reservoir. In this work, the physical property and the swelling of porous media in the offshore natural gas hydrate reservoir were measured. The results show that the swelling characteristics of the offshore natural gas hydrate reservoir are influenced by the coupling of the montmorillonite content and the salt ion concentration. The swelling rate of porous media is directly proportionate to water content and the initial porosity, and inversely proportionate to salinity. Compared with water content and salinity, the initial porosity has much obvious influence on the swelling, which the swelling strain of porous media with the initial porosity of 30% is three times more than that of montmorillonite with the initial porosity of 60%. Salt ions mainly affect the swelling of water bound by porous media. Then, the influence mechanism of the swelling characteristics of porous media on the structural characteristics of reservoir was tentatively explored. It can provide a basic date and scientific basis for furthering the mechanical characteristics of the reservoir in the hydrate exploitation in the offshore gas hydrate reservoir.

6.
Entropy (Basel) ; 24(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35741486

RESUMO

Depressurization combined with brine injection is a potential method for field production of natural gas hydrate, which can significantly improve production efficiency and avoid secondary formation of hydrate. In this work, the experiments of hydrate production using depressurization combined with brine injection from a simulated excess-water hydrate reservoir were performed, and the effects of NaCl concentration on hydrate decomposition, temperature change, and heat transfer in the reservoir were investigated. The experimental results indicate that there is little gas production during depressurization in a excess-water hydrate reservoir, and the gas dissociated from hydrate is trapped in pores of sediments. The high-water production reduces the final gas recovery, which is lower than 70% in the experiments. The increasing NaCl concentration only effectively promotes gas production rate in the early stage. The final cumulative gas production and average gas production rate have little difference in different experiments. The NaCl concentration of the produced water is significantly higher than that which is in contact with hydrate in the sediments because the water produced by hydrate decomposition exists on the surface of undissociated hydrate. The high concentration of NaCl in the produced water from the reactor significantly reduces the promoting effect and efficiency of NaCl solution on hydrate decomposition. The injection of NaCl solution decreases the lowest temperature in sediments during hydrate production, and increases the sensible heat and heat transfer from environment for hydrate decomposition. The changes of temperature and resistance effectively reflect the distribution of the injected NaCl solution in the hydrate reservoir.

7.
Entropy (Basel) ; 24(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35626509

RESUMO

The phase fraction measurement of gas-water-sand fluid in downhole is an important premise for safe and stable exploitation of natural gas hydrates, but the existing phase fraction measurement device for oil and natural gas exploitation can't be directly applied to hydrate exploitation. In this work, the electrical resistivity properties of different gas-water-sand fluid were experimentally investigated using the multiphase flow loop and static solution experiments. The effect of gas phase fraction and gas bubbles distribution, sand fraction and sand particle size on the relative resistivity of the multiphase fluid were systematically studied. The measurement devices and operating parameters were also optimized. A novel combined resistivity method was developed, which demonstrated a good effect for the measurement of phase fractions of gas-water-sand fluid, and will have a good application potential in marine natural gas hydrates exploitation.

8.
J Proteome Res ; 20(1): 369-380, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33108200

RESUMO

Ricin is a type II ribosome-inactivating protein toxin consisting of A and B chains linked by one interchain disulfide bond. Because of its high toxicity depending on both chains together, confirming the presence of both A and B chains of intact ricin is required during the investigation of the illegal production and application. Here, we report a novel and sensitive acetonitrile (ACN)-assisted trypsin digestion method for unambiguous identification of intact ricin by simultaneous detection of its marker peptides from A and B chains. Marker peptides were generated with a simple procedure by direct cleaving the native ricin at 45 °C for 4 h using Promega modified sequencing grade trypsin under the assistance of 10% ACN, and then directly analyzed by ultrahigh performance liquid chromatography tandem mass spectrometry. The type of trypsin was found to be one critical factor for cleavage of intact ricin based on a significant difference in the yields of specific peptides generated while using various types of trypsin. A low content of ACN in enzymatic buffer significantly reduced the digestion time from overnight to 4 h. There was commonly a better MS response of marker peptides when using the developed ACN-assisted trypsin digestion method than methanol-assisted trypsin digestion within the same 4 h. Totally, seven specific peptides with high sensitivity and specificity including three in the A-chain (TA7, TA11, and TA10) and four in the B-chain (TB6, TB14-ss-TB16, TB20, and TB18) were obtained as good marker peptides for unambiguous identification of intact ricin. The lowest concentration of native ricin for unambiguous identification was 20 ng/mL, in which three marker peptides from both the A-chain and B-chain could be measured with a minimum of three ion transitions. Combined with affinity enrichment, the developed approach was successfully applied for the measurement of intact ricin from the complicated matrix samples of the second, third, and fourth biotoxin exercises organized by the Organisation for the Prohibition of Chemical Weapons (OPCW). This study has provided a recommended detection method combined with one novel ACN-assisted trypsin digestion with MS for forensic unambiguous confirmation of trace ricin intact with high confidence.


Assuntos
Ricina , Acetonitrilas , Cromatografia Líquida , Digestão , Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Tripsina
9.
Anal Bioanal Chem ; 413(2): 585-597, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33184759

RESUMO

The toxic protein of ricin has drawn wide attention in recent years as a potential bioterrorism agent due to its high toxicity and wide availability. For the verification of the potential anti-terrorism activities, it is urgent for the quantification of ricin in food-related matrices. Here, a novel strategy of trypsin/Glu-C tandem digestion was introduced for quantitative detection of ricin marker peptides in several beverage matrices using isotope-labeled internal standard (IS)-mass spectrometry. The ricin in beverages was captured and enriched by biotinylated anti-ricin polyclonal antibodies conjugated to streptavidin magnetic beads. The purified ricin was cleaved using the developed trypsin/Glu-C tandem digestion method and then quantitatively detected by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with isotope-labeled T7A and TG11B selected as IS. The use of trypsin/Glu-C digestion allows shorter peptides, which are more suitable for MS detection, to be obtained than the use of single trypsin digestion. Under the optimized tandem digestion condition, except for T7A in the A-chain, two resulting specific peptides of TG13A, TG28A from the A-chain and two of TG11B, TG33B from the B-chain were chosen as novel marker peptides with high MS response. The uniqueness of the selected marker peptides allows for unambiguous identification of ricin among its homologous proteins in a single run. The MS response of the four novel marker peptides is increased by more than 10 times compared with that of individual corresponding tryptic peptides. Both the marker peptides of A-chain T7A and B-chain TG11B were selected as quantitative peptides based on the highest MS response among the marker peptides from their individual chains. The limit of detection (LOD) of ricin is 0.1 ng/mL in PBS and 0.5 ng/mL in either milk or orange juice. The linear range of calibration curves for ricin were 0.5-300 ng/mL in PBS, 1.0-400 ng/mL in milk, and 1.0-250 ng/mL in orange juice. The method accuracy ranged between 82.6 and 101.8% for PBS, 88.9-105.2% for milk, and 95.3-118.7% for orange juice. The intra-day and inter-day precision had relative standard deviations (%RSD) of 0.3-9.4%, 0.7-8.9%, and 0.2-6.9% in the three matrices respectively. Furthermore, whether T7A or TG11B is used as a quantitative peptide, the quantitative results of ricin are consistent. This study provides not only a practical method for the absolute quantification of ricin in beverage matrices but also a new strategy for the investigation of illegal use of ricin in chemical weapon verification tasks such as OPCW biotoxin sample analysis exercises.


Assuntos
Bebidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Ricina/análise , Espectrometria de Massas em Tandem/métodos , Tripsina/análise , Biotinilação , Calibragem , Marcação por Isótopo , Limite de Detecção , Magnetismo , Peptídeos/química , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solventes , Estreptavidina/análise
10.
Anal Bioanal Chem ; 412(23): 5819-5826, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32666140

RESUMO

The detection of cyanide anion (CN-), a highly toxic pollutant, has attracted growing attention in the past years. In this work, a nanosensor composed of hyperbranched polyethyleneimine (hPEI)-assisted dual-emissive gold nanoclusters (DE-Au NCs) is proposed for ratiometric detection of CN- based on surface valence state-driving etch. The ratiometric color change of fluorescence is based on a fact that the red-emissive Au NCs with a high content of surface Au(I) can be easily etched by CN-, while the blue-emissive Au NCs with nearly neutral character can resist CN-. Because of the specific gold-CN- chemistry and electrostatic attraction between the positively charged hPEI protecting layer and the negatively charged CN-, the DE-Au NC-based nanosensor provides high selectivity toward CN- over other anions with a limit of detection of 10 nM. Practical application of the proposed DE-Au NC nanosensor is verified by satisfying recoveries of CN- determination in river water and urine samples. Graphical abstract.


Assuntos
Cianetos/análise , Ouro/química , Nanopartículas Metálicas/química , Humanos , Limite de Detecção , Espectroscopia Fotoeletrônica/métodos , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Urina/química , Água/química
11.
Anal Bioanal Chem ; 411(15): 3405-3415, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31011788

RESUMO

Sulfur mustard (HD) reacts with human serum albumin (HSA) at Cys34 and produces a long-term biomarker of HD exposure. Here, we present a novel, sensitive, and convenient method for quantification of HD exposure by detection of HD-HSA adducts using pronase digestion, benzyl chloroformate (Cbz-Cl) derivatization, and ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). The HSA in HD-exposed plasma in vitro was precipitated with acetone and digested (2 h, 50 °C) with pronase to form the alkylated dipeptide, S-hydroxyethylthioethyl-CysPro (HETE-CP). The HETE-CP adduct was derivatized with Cbz-Cl to generate N-carbobenzoxy HETE-CP (HETE-C(Cbz)P). The derivatized product was analyzed by UHPLC-MS/MS. HD surrogate, 2-chloroethyl ethyl sulfide (2-CEES), was introduced as a non-isotope internal standard (ISTD) instead of traditional d8-HD for quantification. The method was found to be linear between 1.00 and 200 ng/mL HD exposure (R2 > 0.998) with precision of ≤ 9.0% relative standard deviation (RSD) and accuracy ranged between 97.1 and 111%. The limit of detection (LOD) is 0.500 ng/mL (S/N~5), over 15 times lower than that of the previous method (7.95 ng/mL). Time-consuming affinity purification or solid phase extraction (SPE) is not needed in the experiment and the operation takes less than 5 h. This study provides a new strategy and useful tool for retrospective analysis of HD exposure by HETE-CP biomarker detection. Graphical abstract Flow diagram for quantification of sulfur mustard exposure by detection of HETE-CP dipeptide adduct after benzyl chloroformate derivatization using ultra-high-pressure liquid chromatography tandem mass spectrometry.


Assuntos
Substâncias para a Guerra Química/análise , Cromatografia Líquida de Alta Pressão/métodos , Gás de Mostarda/análise , Espectrometria de Massas em Tandem/métodos , Alquilação , Biomarcadores/análise , Biomarcadores/sangue , Precipitação Química , Dipeptídeos/análise , Formiatos/química , Humanos , Limite de Detecção , Pronase/química , Proteólise , Albumina Sérica Humana/análise , Extração em Fase Sólida/métodos
12.
Phys Chem Chem Phys ; 19(32): 21769-21776, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28783182

RESUMO

Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH4 storage and CO2 capture from CO2/H2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

13.
Langmuir ; 32(31): 7975-84, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27398713

RESUMO

The behavior of hydrate formation in porous sediment has been widely studied because of its importance in the investigation of reservoirs and in the drilling of natural gas hydrate. However, it is difficult to understand the hydrate nucleation and growth mechanism on the surface and in the nanopores of porous media by experimental and numerical simulation methods. In this work, molecular dynamics simulations of the nucleation and growth of CH4 hydrate in the presence of the surface and nanopores of clay are carried out. The molecular configurations and microstructure properties are analyzed for systems containing one H2O hydrate layer (System A), three H2O hydrate layers (System B), and six H2O hydrate layers (System C) in both clay and the bulk solution. It is found that hydrate formation is more complex in porous media than in the pure bulk solution and that there is cooperativity between hydrate growth and molecular diffusion in clay nanopores. The hydroxylated edge sites of the clay surface could serve as a source of CH4 molecules to facilitate hydrate nucleation. The diffusion velocity of molecules is influenced by the growth of the hydrate that forms a block in the throats of the clay nanopore. Comparing hydrate growth in different clay pore sizes reveals that the pore size plays an important role in hydrate growth and molecular diffusion in clay. This simulation study provides the microscopic mechanism of hydrate nucleation and growth in porous media, which can be favorable for the investigation of the formation of natural gas hydrate in sediments.

14.
Anal Methods ; 16(2): 301-313, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38115807

RESUMO

Rapid and accurate detection of hydrolyzed products of organophosphorus nerve agents (OPNAs) is an important method to effectively confirm the use of these agents. OPNAs are rapidly hydrolyzed to the methyl phosphonates (MPs) in the environment, which can be used as environmental traceability marker for OPNAs. Herein, magnetic mesoporous materials combined with real-time in situ mass spectrometry (MS) were used to achieve high-throughput detection of MPs. Novel magnetic mesoporous nanoparticles Fe3O4@nSiO2@mSiO2 were synthesized via co-condensation of tetraethyl orthosilicate and cetyltrimethylammonium bromide (CTAB) on the surface of nonporous silica-coated Fe3O4 under alkaline conditions. CTAB templates were removed by the reflux of ethanol (0.0375 mM ammonium nitrate) to form mesoporous SiO2, which has a large specific surface area of 549 m2 g-1 and an excellent magnetization strength of 59.6 emu g-1. A quick, cost-effective, rugged, and safe magnetic preparation method, magnetic QuEChERS, was established with magnetic mesoporous nanoparticles (Fe3O4@nSiO2@mSiO2) as adsorption materials for direct analysis in real-time and tandem MS (DART-MS/MS) of MPs in environmental samples. The method exhibits good linearity (R2 > 0.992) in the range of 20.0-4.00 µg mL-1, the limits of detection were <5.00 ng mL-1, the limits of quantification were <20.0 ng mL-1, and the extraction recoveries were 70.2-98.1%, with relative standard deviations (RSDs) in the range of 1.97-10.6%. Additionally, using this method, analysis of 70 environmental samples could be completed within 20 min. Then, the M-QuEChERS-DART-MS/MS method was applied to the 52nd Organisation for the Prohibition of Chemical Weapons (OPCW) environmental spiked samples analysis, where the accuracy was 95.2-116%, and the RSD was 1.16-7.83%. The results demonstrated that Fe3O4@nSiO2@mSiO2 based on the QuEChERS method can quickly and efficiently remove the matrix of environmental samples and when coupled with the DART-MS/MS can achieve high-throughput determination of MPs in environmental samples.

15.
Comput Biol Med ; 174: 108393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582001

RESUMO

X-rays, commonly used in clinical settings, offer advantages such as low radiation and cost-efficiency. However, their limitation lies in the inability to distinctly visualize overlapping organs. In contrast, Computed Tomography (CT) scans provide a three-dimensional view, overcoming this drawback but at the expense of higher radiation doses and increased costs. Hence, from both the patient's and hospital's standpoints, there is substantial medical and practical value in attempting the reconstruction from two-dimensional X-ray images to three-dimensional CT images. In this paper, we introduce DP-GAN+B as a pioneering approach for transforming two-dimensional frontal and lateral lung X-rays into three-dimensional lung CT volumes. Our method innovatively employs depthwise separable convolutions instead of traditional convolutions and introduces vector and fusion loss for superior performance. Compared to prior models, DP-GAN+B significantly reduces the generator network parameters by 21.104 M and the discriminator network parameters by 10.82 M, resulting in a total reduction of 31.924 M (44.17%). Experimental results demonstrate that our network can effectively generate clinically relevant, high-quality CT images from X-ray data, presenting a promising solution for enhancing diagnostic imaging while mitigating cost and radiation concerns.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Algoritmos
16.
RSC Adv ; 13(39): 27535-27548, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37720833

RESUMO

Methyl-diethanolamine (CAS: 105-59-9), ethyl-diethanolamine (CAS: 139-87-7), and triethanolamine (CAS: 102-71-6) were identified as the degradation products and bio-markers of nitrogen mustard exposure. Sensitive and convenient detection methods for amino alcohol are of great importance to identify nitrogen mustard exposure in forensic analysis. Herein, analytical methods including gas chromatography-tandem mass spectrometry combined with heptafluorobutyryl derivatization and solid phase extraction were established for retrospective detection of the biomarkers in human plasma and urine samples. The efficiency of the method was improved by optimizing the conditions for sample preparation and the GC-MS/MS method. The optimization included the derivatization temperature, reaction time, reagent dosage and solid phase extraction cartridges, eluent and pH of the loading sample. The results indicated that the SCX cartridge resulted in better enrichment and purification effects, and the best recovery could be obtained with pH = 3-4 for the loading samples and an eluent of 2 mL 10% NH4OH/MeOH. The GC-MS/MS parameters were also optimized for better specificity and sensitivity. The established method was fully validated for each analyte both in plasma and urine matrixes. The linear range of analytes in plasma was 1.0-1000 ng mL-1 with a correlation parameter (R2) of ≥0.994, intra-day/inter-day accuracy of 93.7-117%, and relative standard deviation (RSD) of ≤6.5%. Meanwhile the results in urine were 1.0-1000 ng mL-1 with R2 of ≥0.996, intra-day/inter-day accuracy of 94.3-122%, and RSD of ≤6.6%. The detection limit of the analytes was 1.0 ng mL-1. The method was applied for the detection and identification of trace amino alcohols present in urine samples dispatched by the Organization for the Prohibition of Chemical Weapons (OPCW) and the results were confirmed to be correct.

17.
Comput Biol Med ; 167: 107596, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890423

RESUMO

Organ segmentation in abdominal or thoracic computed tomography (CT) images plays a crucial role in medical diagnosis as it enables doctors to locate and evaluate organ abnormalities quickly, thereby guiding surgical planning, and aiding treatment decision-making. This paper proposes a novel and efficient medical image segmentation method called SUnet for multi-organ segmentation in the abdomen and thorax. SUnet is a fully attention-based neural network. Firstly, an efficient spatial reduction attention (ESRA) module is introduced not only to extract image features better, but also to reduce overall model parameters, and to alleviate overfitting. Secondly, SUnet's multiple attention-based feature fusion module enables effective cross-scale feature integration. Additionally, an enhanced attention gate (EAG) module is considered by using grouped convolution and residual connections, providing richer semantic features. We evaluate the performance of the proposed model on synapse multiple organ segmentation dataset and automated cardiac diagnostic challenge dataset. SUnet achieves an average Dice of 84.29% and 92.25% on these two datasets, respectively, outperforming other models of similar complexity and size, and achieving state-of-the-art results.


Assuntos
Coração , Redes Neurais de Computação , Semântica , Tórax , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador
18.
Materials (Basel) ; 15(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35057270

RESUMO

The effect of silica fume on the rheological properties of a cement-silica fume-high range water reducer-water mixture with ultra-low water binder ratio (CSHWM) was studied. The results indicate that the W/B ratio and silica fume content have different effects on the rheological parameters, including the yield stress, plastic viscosity, and hysteresis loop area. The shear-thickening influence of CSHWM decreased with the increased silica fume content. When the silica fume content increased from 0% to 35%, the mixture with W/B ratio of 0.19 and 0.23 changed from a dilatant fluid to a Newtonian fluid, and then to a pseudoplastic fluid. When the silica fume content was less than 15%, the yield stress was close to 0. With the increase of silica fume content, the yield stress increased rapidly. The plastic viscosity and hysteresis loop area decreased slightly with the addition of a small amount of silica fume, but increased significantly with the continuous increase of silica fume. Compared with the Bingham and modified Bingham models, the Herschel-Buckley model is more applicable for this CSHWM.

19.
RSC Adv ; 12(31): 20227-20238, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35919611

RESUMO

Gas hydrate has great application potential in gas separation, energy storage, seawater desalination, etc. However, the intensity of mass and heat transfer is not enough to meet the needs of efficient hydrate synthesis. Nanoparticles, different from other liquid chemical additives, are considered as effective additives to promote hydrate formation due to their rich specific surface area and excellent thermal conductivity. This work summarizes the effect of the nanoparticles on the thermodynamics and kinetics of hydrate formation. And also, this work probes into the mechanism of the effect of the nanoparticles on the formation of hydrate as well as provides some suggestions for future research. It is found that it's difficult for nanoparticles to effectively promote the formation of the gas hydrate without the use of surfactants, because the adhesion characteristics of the nanoparticles make them easily agglomerate or even agglomerate in solution. In addition, at present, the research on the influence of nanoparticles on the formation and decomposition of natural gas hydrate is still very fragmented, and the micro mechanism of the influence is not clear, which requires more systematic and specific research in the future. At the same time, the development of nanoparticles that can promote the formation of natural gas hydrate should also become the focus of future research.

20.
Se Pu ; 39(8): 913-920, 2021 Aug.
Artigo em Zh | MEDLINE | ID: mdl-34212592

RESUMO

Cyanogen chloride (ClCN) has been widely used in industrial production. ClCN is also listed in the Schedule of the Chemical Weapons Convention (CWC). The use of traditional colorimetric analysis or gas chromatography for the detection of ClCN has been characterized by low efficiency and poor sensitivity. In this study, a method was established for the qualitative analysis and quantitative detection of ClCN in organic and water matrices by gas chromatography-mass spectrometry (GC-MS) based on thiol derivatization. 1-Butylthiol was selected as the optimal derivatization reagent. The optimal temperature for thiol derivatization in the organic matrices was 40 ℃ and the reaction time was 10 min. The pH for derivatization was approximately 9. The ClCN in the organic matrices was directly analyzed by GC-MS after derivatization. The conditions of ClCN derivatization in the water matrices were the same as those in the organic matrices. After the derivatization of ClCN, headspace-solid phase microextraction (HS-SPME) was employed during sample preparation for water matrices. Different temperatures for HS-SPME were explored, and the optimal temperature was found to be 55 ℃. The product of thiol derivatization was confirmed as butyl thiocyanate. The main fragmentation patterns and mass spectrometric cleavage pathway were investigated by GC-MS/MS. The quantitative determination of ClCN in organic and water matrices was conducted via the internal standard and external standard methods, respectively. ClCN showed good linearity in the corresponding ranges in the organic and water matrices. The correlation coefficients for both matrices were greater than 0.99. The linearities of ClCN in the organic and water matrices were in the range of 20-2000 µg/L and 20-1200 µg/L, respectively. An organic sample and water samples from different substrates were selected to verify the accuracy and precision of the method at three spiked levels. The average spiked recoveries of ClCN in the organic sample and water samples were 87.3%-98.8% and 97.6%-102.2%, respectively. The corresponding relative standard deviations (RSDs, n=6) were 2.1%-4.7% and 2.8%-4.2%. The derivatization method established in this study showed good reaction specificity. The method was successfully applied in the analysis of samples obtained from the Organisation for the Prohibition of Chemical Weapons (OPCW). The method established in this study for the detection of ClCN showed high sensitivity and precision, and could aid in the analysis and detection of ClCN in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA