RESUMO
Liver fibrosis is a wound-healing process characterized by excess formation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). Previous studies show that both EZH2, an epigenetic regulator that catalyzes lysine 27 trimethylation on histone 3 (H3K27me3), and long non-coding RNA H19 are highly correlated with fibrogenesis. In the current study, we investigated the underlying mechanisms. Various models of liver fibrosis including Mdr2-/-, bile duct ligation (BDL) and CCl4 mice were adapted. We found that EZH2 was markedly upregulated and correlated with H19 and fibrotic markers expression in these models. Administration of EZH2 inhibitor 3-DZNeP caused significant protective effects in these models. Furthermore, treatment with 3-DZNeP or GSK126 significantly inhibited primary HSC activation and proliferation in TGF-ß-treated HSCs and H19-overexpreesing LX2 cells in vivo. Using RNA-pull down assay combined with RNA immunoprecipitation, we demonstrated that H19 could directly bind to EZH2. Integrated analysis of RNA-sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) further revealed that H19 regulated the reprogramming of EZH2-mediated H3K27me3 profiles, which epigenetically promoted several pathways favoring HSCs activation and proliferation, including epithelial-mesenchymal transition and Wnt/ß-catenin signaling. In conclusion, highly expressed H19 in chronic liver diseases promotes fibrogenesis by reprogramming EZH2-mediated epigenetic regulation of HSCs activation. Targeting the H19-EZH2 interaction may serve as a novel therapeutic approach for liver fibrosis.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Cirrose Hepática , RNA Longo não Codificante , Animais , Camundongos , Epigênese Genética , Células Estreladas do Fígado/metabolismo , Histonas/metabolismo , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Lisina/química , Lisina/metabolismo , Metilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismoRESUMO
Xanthoceras sorbifolium seeds have a wide range of applications in the food and pharmaceutical industries. To compare and analyze the chemical compositions of different parts of X. sorbifolium seeds and explore the potential value and research prospects of non-medicinal parts, this study used ultra-high-performance liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) to detect the chemical composition of various parts of the seeds. A total of 82 components were preliminary identified from X. sorbifolium seeds, including 5 amino acids, 4 polyphenols, 3 phenylpropionic acids, 7 organic acids, 15 flavonoids, 6 glycosides, and 23 saponins. Mass spectrometry molecular networking(MN) analysis was conducted on the results from different parts of the seeds, revealing significant differences in the components of the seed kernel, seed coat, and seed shell. The saponins and flavonoids in the seed kernel were superior in terms of variety and content to those in the seed coat and shell. Based on the chromatographic peaks of different parts from multiple batches of samples, multivariate statistical analysis was carried out. Four differential components were determined using HPLC, and the average content of these components in the seed kernel, seed coat, and seed shell were as follows: 0.183 6, 0.887 4, and 1.440 1 mg·g~(-1) for fraxin; 0.035 8, 0.124 1, and 0.044 5 mg·g~(-1) for catechin; 0.032 9, 0.072 0, and 0.221 5 mg·g~(-1) for fraxetin; 0.435 9, 2.114 7, and 0.259 7 mg·g~(-1) for epicatechin. The results showed that catechin and fraxetin had relatively low content in all parts, while fraxin had higher content in the seed coat and seed shell, and epicatechin had higher content in the seed kernel and seed coat. Therefore, the seed coat and seed shell possess certain development value. This study provides rapid analysis and comparison of the chemical compositions of different parts of X. sorbifolium seeds, which offers an experimental basis for the research and clinical application of medicinal substances in X. sorbifolium seeds.
Assuntos
Catequina , Saponinas , Cromatografia Líquida de Alta Pressão/métodos , Catequina/análise , Flavonoides/análise , Sementes/química , Saponinas/análiseRESUMO
This study aimed to explore the effects and mechanisms of total flavones of Abelmoschus manihot(TFA), the extracts from traditional Chinese medicine indicated for kidney diseases, on insulin resistance(IR) and podocyte epithelial-mesenchymal transition(EMT) in diabetic kidney disease(DKD), and further to reveal the scientific connotation. Thirty-two rats were randomly divided into a normal group, a model group, a TFA group, and a rosiglitazone(ROS) group. The modified DKD model was induced in rats by methods including high-fat diet feeding, unilateral nephrectomy, and streptozotocin(STZ) intraperitoneal injection. After modeling, the rats in the four groups were given double-distilled water, TFA suspension, and ROS suspension correspondingly by gavage every day. At the end of the 8th week of drug administration, all rats were sacrificed, and the samples of urine, blood, and kidney tissues were collected. The parameters and indicators related to IR and podocyte EMT in the DKD model rats were examined and observed, including the general condition, body weight(BW) and kidney weight(KW), the biochemical parameters and IR indicators, the protein expression levels of the key signaling molecules and structural molecules of slit diaphragm in the renal insulin receptor substrate(IRS) 1/phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway, foot process form and glomerular basement membrane(GBM) thickness, the expression of the marked molecules and structural molecules of slit diaphragm in podocyte EMT, and glomerular histomorphological characteristics. The results showed that for the DKD model rats, both TFA and ROS could improve the general condition, some biochemical parameters, renal appearance, and KW. The ameliorative effects of TFA and ROS were equivalent on BW, urinary albumin(UAlb)/urinary creatinine(UCr), serum creatinine(Scr), triglyceride(TG), and KW. Secondly, they could both improve IR indicators, and ROS was superior to TFA in improving fast insulin(FIN) and homeostasis model assessment of insulin resistance(HOMA-IR). Thirdly, they could both improve the protein expression levels of the key signaling molecules in the IRS1/PI3K/Akt pathway and glomerulosclerosis in varying degrees, and their ameliorative effects were similar. Finally, both could improve podocyte injury and EMT, and TFA was superior to ROS. In conclusion, this study suggested that podocyte EMT and glomerulosclerosis could be induced by IR and the decreased activation of the IRS1/PI3K/Akt pathway in the kidney in DKD. Similar to ROS, the effects of TFA in inhibiting podocyte EMT in DKD were related to inducing the activation of the IRS1/PI3K/Akt pathway and improving IR, which could be one of the scientific connotations of TFA against DKD. This study provides preliminary pharmacological evidence for the development and application of TFA in the field of diabetic complications.
Assuntos
Abelmoschus , Diabetes Mellitus , Nefropatias Diabéticas , Flavonas , Resistência à Insulina , Podócitos , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Abelmoschus/química , Ratos Sprague-Dawley , Transição Epitelial-Mesenquimal , Flavonas/farmacologia , Espécies Reativas de OxigênioRESUMO
Liver fibrosis is the common consequence of almost all liver diseases and has become an urgent clinical problem without efficient therapies. Recent evidence has shown that hepatocytes-derived extracellular vesicles (EVs) play important roles in liver pathophysiology, but little is known about the role of damaged hepatocytes-derived EVs in hepatic stellate cell (HSC) activation and following fibrosis. Tetramethylpyrazine (TMP) from Ligusticum wallichii Franchat exhibits a broad spectrum of biological activities including liver protection. In this study, we investigated whether TMP exerted liver-protective action through regulating EV-dependent intercellular communication between hepatocytes and HSCs. Chronic liver injury was induced in mice by CCl4 (1.6 mg/kg, i.g.) twice a week for 8 weeks. In the last 4 weeks of CCl4 administration, mice were given TMP (40, 80, 160 mg·kg-1·d-1, i.g.). Acute liver injury was induced in mice by injection of a single dose of CCl4 (0.8 mg/kg, i.p.). After injection, mice were treated with TMP (80 mg/kg) every 24 h. We showed that TMP treatment dramatically ameliorated CCl4-induced oxidative stress and hepatic inflammation as well as acute or chronic liver fibrosis. In cultured mouse primary hepatocytes (MPHs), treatment with CCl4 or acetaminophen resulted in mitochondrial dysfunction, release of mitochondrial DNA (mtDNA) from injured hepatocytes to adjacent hepatocytes and HSCs through EVs, mediating hepatocyte damage and fibrogenic responses in activated HSCs; pretreatment of MPHs with TMP (25 µM) prevented all these pathological effects. Transplanted serum EVs from TMP-treated mice prevented both initiation and progression of liver fibrosis caused by CCl4. Taken together, this study unravels the complex mechanisms underlying the protective effects of TMP against mtDNA-containing EV-mediated hepatocyte injury and HSC activation during liver injury, and provides critical evidence inspiring the development of TMP-based innovative therapeutic agents for the treatment of liver fibrosis.
Assuntos
Vesículas Extracelulares , Hepatopatias , Animais , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , DNA Mitocondrial/uso terapêutico , Fibrose , Células Estreladas do Fígado , Hepatócitos , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Hepatopatias/metabolismo , Camundongos , Mitocôndrias/patologia , PirazinasRESUMO
To investigate the responses of key enzymes involved in steroidal saponin biosynthesis of Dioscorea zingiberensis to low phosphorus stress, we designed three treatments of severe phosphorus stress, moderate phosphorus stress, and normal phosphorus level. The D. zingiberensis plants were collected at the early, middle, and late stages of treatment. The content of total steroidal saponins in different tissues of D. zingiberensis was determined by spectrophotometry for the identification of the critical stage in response to low phosphorus stress. BGI 500 sequencing platform was employed to obtain the transcript information of D. zingiberensis samples at the critical stage of low phosphorus stress, and then a transcriptome library was constructed. The correlation between the expression of genes involved in steroidal saponin biosynthesis and the content of total steroidal saponins was analyzed for the screening of the key enzyme genes in response to low phosphorus stress. Further, the expression patterns of these genes were analyzed by real-time fluorescence PCR(qRT-PCR). The content of total steroidal saponins in D. zingiberensis had obvious tissue specificity under low phosphorus stress, and the early stage of stress was particularly important for D. zingiberensis to respond to low phosphorus stress. A total of 101 593 unigenes were obtained by transcriptome sequencing, of which 77.35% were annotated in NT, NR, SwissProt, KOG, GO, and KEGG. A total of 256 transcripts of known key enzyme genes in the biosynthetic pathway of steroidal saponins were identified. The expression levels of 69 transcripts encoding 18 catalytic enzymes were significantly correlated with the content of total steroidal saponins. The qRT-PCR results showed that several key enzyme genes presented different expression patterns in four tissues under low phosphorus stress. The results indicated that the content of total steroidal saponins and the expression of key enzyme genes regulating steroidal saponin biosynthesis in D. zingensis changed under low phosphorus stress. This study provides the biological information for elucidating the molecular mechanism of steroidal saponin biosynthesis in D. zingensis exposed to low phosphorus stress.
Assuntos
Dioscorea , Saponinas , Dioscorea/genética , Fósforo , Saponinas/genética , Esteroides , TranscriptomaRESUMO
The synergistic anti-tumor effect of schisandrin B (Sch.B) and apatinib was investigated in vitro. The CCK-8 assay revealed that Sch.B enhanced the inhibition of apatinib on cell proliferation by arresting cell cycle in G0/G1 phase. Sch.B also potentiated the suppression of apatinib on cell migration and invasion, by means of wound-healing and transwell invasion assay. Flow cytometry results showed that Sch.B enhanced apoptosis induced by apatinib. The results were confirmed by western blot analysis of the proteins MMP-9, and Bax caspase-9, and -12. These results suggest that combining apatinib and Sch.B is an effective therapeutic strategy for preventing GC progression. [Formula: see text].
Assuntos
Apoptose , Ciclo-Octanos , Linhagem Celular Tumoral , Proliferação de Células , Lignanas , Estrutura Molecular , Compostos Policíclicos , PiridinasRESUMO
Herein, the effect of silymarin pretreatment on the pharmacokinetics of simvastatin in rats was evaluated. To ensure the accuracy of the results, a rapid and sensitive UPLC-MS/MS method was established for simultaneous quantification of simvastatin (SV) and its active metabolite simvastatin acid (SVA). This method was applied for studying the pharmacokinetic interactions in rats after oral co-administration of silymarin (45 mg/kg) and different concentrations of SV. The major pharmacokinetic parameters, including Cmax, tmax, t1/2, mean residence time (MRT), elimination rate constant (λz) and area under the concentration-time curve (AUC0-12h), were calculated using the non-compartmental model. The results showed that the co-administration of silymarin and SV significantly increased the Cmax and AUC0-12h of SVA compared with SV alone, while there was no significant difference with regards to Tmax and t1/2. However, SV pharmacokinetic parameters were not significantly affected by silymarin pretreatment. Therefore, these changes indicated that drug-drug interactions may occur after co-administration of silymarin and SV.
Assuntos
Interações Medicamentosas , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Metabolômica , Silimarina/farmacologia , Sinvastatina/farmacocinética , Animais , Metabolômica/métodos , Estrutura Molecular , RatosRESUMO
Osimertinib, a new-generation inhibitor of the epidermal growth factor, has been used for the clinical treatment of advanced T790M mutation-positive tumors. In this research, an original analysis method was established for the quantification of osimertinib by ultra-performance liquid chromatography with time of flight mass spectrometry (UPLC-TOF-MS) in rat plasma. After protein precipitation with acetonitrile and sorafinib (internal standard, IS), they were chromatographed through a Waters XTerra MS C18 column. The mobile phase was acetonitrile and water (including 0.1% ammonia). The relative standard deviation (RSD) of the intra- and inter-day results ranged from 5.38 to 9.76% and from 6.02 to 9.46%, respectively, and the extraction recovery and matrix effects were calculated to range from 84.31 to 96.14% and from 91.46 to 97.18%, respectively. The results illustrated that the analysis method had sufficient specificity, accuracy and precision. Meanwhile, the UPLC-TOF-MS method for osimertinib was successfully applied into the pharmacokinetics of SD rats.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Piperazinas/sangue , Acrilamidas , Compostos de Anilina , Animais , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em TandemRESUMO
A low-cost rodent model of HIV infection and which presents high application value is an effective tool to investigate HIV infection and pathogenesis. However, development of such a small animal model has been hampered by the unsuitability of rodent cells for HIV-1 replication given that the retrovirus HIV-1 has high selectivity to its host cell. Our study used the mouse leukemia cell lines L615 and L1210 that were induced by murine leukemia virus and transfected with hCD4/CCR5 loaded-lentiviral vector. Lentiviral vectors containing the genes hCD4/CCR5 under the transcriptional control of cytomegalovirus promoter were designed. Transfection efficiencies of human CD4 and CCR5 in L615 and L1210 cells were analyzed by quantitative real-time polymerase chain reaction (RT-PCR) and Western blot assay. Results showed that hCD4 and CCR5 proteins were expressed on the cell surface, demonstrating that the L615 and L1210 cells were humanized and that they possess the characteristics necessary for HIV infection of human host cells. Moreover, the sensitivity of human CD4/CCR5 transgenic mouse cells to HIV infection was confirmed by RT-PCR and ELISA. Mouse leukemia cell lines that could express hCD4 and CCR5 were thus established to facilitate normal entry of HIV-1 so that a human CD4/CCR5 transgenic mice cell model can be used to investigate the transmission and pathogenesis of HIV/AIDS and potential antiviral drugs against this disease.
Assuntos
Antígenos CD4/biossíntese , Infecções por HIV/genética , Vírus da Leucemia Murina/genética , Receptores CCR5/biossíntese , Animais , Antígenos CD4/genética , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica , Vetores Genéticos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Lentivirus/genética , Camundongos , Camundongos Transgênicos , Receptores CCR5/genética , TransfecçãoRESUMO
An HPLC method was established to determine the contents of catalpol, acteoside, rehmaionoside A, rehmaionoside D, leonuride in three part of Rehmanni glutinosa in Beijing No.1 variety R. glutinosa during the growth period, This method, in combination with its HPLC fingerprint was used to evaluate its overall quality characteristics.The results showed thatï¼â the content of main components of R. glutinosa varied in different growth stages ;â¡ there was a great difference of the content of main components between theradial striations and the non-radial striations; ⢠the two sections almost have the same content distribution of catalpol, acteoside and rehmaionoside D; â£the content of rehmaionoside A in non-radial striations was higher than that in radial striations,while the content of leonuride in radial striations was higher than that in non-radial striations.; â¤the HPLC fingerprint of radial striations, non-radial striations and whole root tuber were basically identical, except for the big difference in the content of chemical components. The result of clustering displayed that the radial striations, non-radial striations, and whole root were divided into two groups. In conclusion, there was a significant difference in the quality characteristics of radial striations and non-radial striations of R. glutinosa. This research provides a reference for quality evaluation and geoherbalism of R. glutinosa.
Assuntos
Compostos Fitoquímicos/análise , Raízes de Plantas/química , Rehmannia/química , Cromatografia Líquida de Alta PressãoRESUMO
Based on plant species databases, species lists and literature records, general situation of the Chinese medicinal endemic plant (vascular plant) has been systematically summarized, and its quantity and distribution characteristics of Chinese medicinal endemic plants are presented in this paper. The results showed that 3 150 endemic species are Chinese medicinal plants belonging to 785 genera in 153 families, which includes 38 species of 22 genera in 12 families of pteridophyta, 42 species of 14 genera in7 families of gymnosperms, and 3 070 species of 749 genara in 134 families of angiosperms. The top four families involving medicinal endemic species are Asteraceae (218 species), Ranunculaceae (182 species), Labiatae (151 species), and Liliaceae (133 species). The top four provincial administration distributed medicinal endemic species are Sichuan (1 568 species), Yunnan (1 533 species), Guizhou (955 species) and Hubei (930 species).On the regional scale, the most abundant one is the southwest region (2 465 species), followed by the central region (1 226 species) and the northwest region (949 species). Localization characteristics for domestication and artificial cultivation of medicinal endemic species are more prominent due to their narrower and limited distribution areas, indicating it is possible for these species acting as local potential resource for reasonable economic development.
Assuntos
Fitoterapia , Plantas Medicinais/classificação , ChinaRESUMO
Since focal adhesion kinase (FAK) was proposed as a mediator of the inflammatory response, we have investigated the role of this molecule in the release of inflammatory cytokines by cultured human periodontal ligament fibroblasts (HPDLFs), cells that are thought to be important in the patient's response to periodontal infection. Human periodontal ligament fibroblasts were stimulated by tumor necrosis factor alpha (TNF-α) and its effects on interleukin (IL)-6 and IL-8 release were measured by ELISA. Expression of matrix metalloproteinase 2 (MMP-2) protein was analysed by western blotting. The levels of IL6, IL8, and MMP2 mRNA were evaluated by real-time PCR. Tumor necrosis factor alpha dose-dependently induced the phosphorylation of FAK, whereas small interfering FAK (siFAK) inhibited TNF-α-induced FAK phosphorylation. Tumor necrosis factor alpha also stimulated the production of IL-6, IL-8, and MMP-2 in a dose-dependent manner. Knockdown of FAK significantly suppressed TNF-α-induced expression of IL6 and IL8 mRNA and release of IL-6 and IL-8 protein in HPDLFs. Similarly, MMP-2 down-regulation was significantly prevented by siFAK. Our results strongly suggest that knockdown of FAK can decrease the production of TNF-α-induced IL-6, IL-8, and MMP-2 in HPDLFs. These effects may help in understanding the mechanisms that control expression of inflammatory cytokines in the pathogenesis of periodontitis.
Assuntos
Fibroblastos/efeitos dos fármacos , Quinase 1 de Adesão Focal/efeitos dos fármacos , Interleucina-6/análise , Interleucina-8/efeitos dos fármacos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/enzimologia , Quinase 1 de Adesão Focal/genética , Técnicas de Silenciamento de Genes , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/enzimologia , Fosforilação , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/administração & dosagemRESUMO
BACKGROUND AND OBJECTIVE: Registration of pulmonary computed tomography (CT) images with radiation-induced lung diseases (RILD) was essential to investigate the voxel-wise relationship between the formation of RILD and the radiation dose received by different tissues. Although various approaches had been developed for the registration of lung CTs, their performances remained clinically unsatisfactory for registration of lung CT images with RILD. The main difficulties arose from the longitudinal change in lung parenchyma, including RILD and volumetric change of lung cancers, after radiation therapy, leading to inaccurate registration and artifacts caused by erroneous matching of the RILD tissues. METHODS: To overcome the influence of the parenchymal changes, a divide-and-conquer approach rooted in the coherent point drift (CPD) paradigm was proposed. The proposed method was based on two kernel ideas. One was the idea of component structure wise registration. Specifically, the proposed method relaxed the intrinsic assumption of equal isotropic covariances in CPD by decomposing a lung and its surrounding tissues into component structures and independently registering the component structures pairwise by CPD. The other was the idea of defining a vascular subtree centered at a matched branch point as a component structure. This idea could not only provide a sufficient number of matched feature points within a parenchyma, but avoid being corrupted by the false feature points resided in the RILD tissues due to globally and indiscriminately sampling using mathematical operators. The overall deformation model was built by using the Thin Plate Spline based on all matched points. RESULTS: This study recruited 30 pairs of lung CT images with RILD, 15 of which were used for internal validation (leave-one-out cross-validation) and the other 15 for external validation. The experimental results showed that the proposed algorithm achieved a mean and a mean of maximum 1 % of average surface distances <2 and 8 mm, respectively, and a mean and a maximum target registration error <2 mm and 5 mm on both internal and external validation datasets. The paired two-sample t-tests corroborated that the proposed algorithm outperformed a recent method, the Stavropoulou's method, on the external validation dataset (p < 0.05). CONCLUSIONS: The proposed algorithm effectively reduced the influence of parenchymal changes, resulting in a reasonably accurate and artifact-free registration.
Assuntos
Algoritmos , Pneumopatias , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Pneumopatias/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Pulmão/diagnóstico por imagem , Radiografia Torácica/métodos , Processamento de Imagem Assistida por Computador/métodos , ArtefatosRESUMO
OBJECTIVE: CD44(+) human ovarian cancer stem cells (CSCs) and CSC-like cells have been identified and characterized. Compelling evidence has revealed that CD44 is involved in the occurrence and development of cancers. Our previous study showed that sphere-forming cells (SFCs) from the human ovarian cancer cell line SKOV-3 had CSC capacity. Therefore, in the present study, we aimed to investigate the effects and mechanisms of the anti-CD44 monoclonal antibody A3D8 on the proliferation and apoptosis of SFCs to explore novel strategies for the treatment of ovarian cancer. METHODS: We investigated the effects and mechanisms of A3D8 on the proliferation and apoptosis of SFCs using the MTS assay, cell cycle analysis, an annexin V-fluorescein isothiocyanate/propidium iodide kit, Rh123 apoptosis detection kit, real-time reverse transcription polymerase chain reaction and Western blotting. RESULTS: After CD44 ligation by A3D8, SFC cell proliferation was notably attenuated, cell cycle progression was arrested in the S phase, and apoptosis was significantly increased. The effect of A3D8 was enhanced in a dose- and time-dependent manner, and the effect of apoptosis induction by DDP was enhanced by combination treatment with A3D8. Furthermore, the messenger RNA expression levels of p21 and caspase-3 were up-regulated, whereas those of CDK2, cyclinA, and Bcl-2 were down-regulated. The protein expression levels of caspase-3 were up-regulated, whereas those of CDK2, cyclinA, and Bcl-2 were down-regulated. CONCLUSIONS: Our findings indicate that anti-CD44 monoclonal antibodies may be a potential strategy for the treatment of human ovarian cancer after conventional therapy via inhibition of growth and the promotion of apoptosis in SFCs with stemness.
Assuntos
Adenocarcinoma/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Adenocarcinoma/patologia , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Ascite/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/imunologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
PURPOSE: Establishing a cross-species animal model of human immunodeficiency virus (HIV) infection is crucial for the study of HIV/acquired immunodeficiency syndrome (AIDS). However, due to the species-specific characteristics of HIV-1, the virus can only infect directly humans and a small number of non-human primates. It cannot directly infect mouse cells across species. METHODS: A mouse leukemia cell line with high CD4 (clusters of differentiation 4)/CCR5 (CC-chemokine receptor 5)/CyclinT1 expression was constructed in this study. First, CD4/CCR5/CyclinT1 lentiviral vector was used to infect a murine leukemia cell line L1210 to express the receptor CD4, co-receptor CCR5 and tat protein driving factor CyclinT1, which are required to infect L1210 cells with HIV-1. RESULTS: The results of sequencing identification and fluorescence expression showed that the plasmid expressing CD4, CCR5, and CyclinT1 vector was successfully constructed and wrapped as the lentiviral vector. Moreover, it was observed that CD4, CCR5, and CyclinT1 proteins were highly expressed in mouse leukemia cells L1210 compared to empty lentiviral vector-transfected cells. Next, viral entry and replication were demonstrated when HIV-1 RNA was detected in body cells and cultured supernatants. Transgenic mice cells L1210 showed significantly greater content of HIV-1 RNA compared to control L1210 cells. Finally, CEMx174 was infected with cell culture supernatants to clarify that the progeny virus is an active virus with infection ability. HIV-1 RNA was highly expressed in CEMx174 cells. CONCLUSIONS: This study made the foundation for future studies evaluating HIV-1 cross-species infection in a murine animal model. The results provided new direction for studies investigating the development of vaccines, antiviral drugs screening, and HIV/AIDS pathogenesis.
Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Animais , Humanos , Camundongos , Linhagem Celular , Infecções por HIV/genética , HIV-1/genética , HIV-1/metabolismo , Camundongos Transgênicos , Receptores CCR5/genética , Receptores CCR5/metabolismoRESUMO
While the detailed mechanisms for how particulate matter (PM) causes adverse health effects in the lungs remain largely unknown, endoplasmic reticulum (ER) stress has been implicated in PM-induced lung injury. The present study was undertaken to examine how/if ER stress might regulate PM-induced inflammation, and to begin to define potential underlying molecular mechanisms. Here, ER stress hallmarks were examined in human bronchial epithelial (HBE) cells exposed to PM. To confirm roles of certain pathways, siRNA targeting ER stress genes and an ER stress inhibitor were employed. Expression of select inflammatory cytokines and related signaling pathway components by the cells were assessed as well. The results showed that PM exposure induced elevations in two ER stress hallmarks, i.e. GRP78 and IRE1α, in time-and/or dose-related manners in the HBE cells. Inhibition of ER stress by siRNA for GRP78 or IRE1α significantly alleviated the PM-induced effects. Further, ER stress appeared to regulate PM-induced inflammation - likely through downstream autophagy and NF-κB pathways - as implied by studies showing that inhibition of ER stress by siRNA of GRP78 or IRE1α caused significant amelioration of PM-induced autophagy and subsequent activation of NF-κB pathways. Moreover, the ER stress inhibitor 4-PBA were used to confirm the protective effects against PM-induced outcomes. Together, the results suggest ER stress plays a deleterious role in PM-induced airway inflammation, possibly through activation of autophagy and NF-κB signaling. Accordingly, protocols/treatments that could lead to inhibited ER stress could potentially be effective for treatment of PM-related airway disorders.
Assuntos
NF-kappa B , Proteínas Serina-Treonina Quinases , Humanos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Chaperona BiP do Retículo Endoplasmático , Inflamação , Material Particulado/toxicidade , Epitélio/metabolismo , Estresse do Retículo Endoplasmático , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologiaRESUMO
Spinal cord injury is a severe and devastating disease, and spasticity is a common and severe complication that is notoriously refractory to treatment. However, the pathophysiological mechanisms underlying spasticity and its development remain largely unknown. The goal of the present study was to find differences, if any, in metabolites of the left precentral gyrus and basal ganglia of patients who have spinal cord injury with or without spasticity, and to explore the relationship between the brain metabolite concentrations and clinical status. Thirty-six participants were recruited for magnetic resonance spectroscopic examination: 23 with spinal cord injury (12 with spasticity and 11 without spasticity) and 13 healthy controls. We acquired localized proton spectra from the precentral gyrus and basal ganglia via 10 mm3 voxels. Notably, univariate linear regression analysis demonstrated that the lower that the N-acetylaspartate concentration (a marker for neuronal loss) was in the precentral gyrus of the patients, the lower their ASIA (American Spinal Injury Association) light-touch scores, pinprick scores, and motor scores. Additionally, longer durations of injury were associated with higher N-acetylaspartate levels in the precentral gyrus. Compared with the healthy participants and patients without spasticity, N-acetylaspartate levels in the patients with spasticity were significantly lower in both the precentral gyrus and basal ganglia. Lower N-acetylaspartate levels also correlated with greater sensory and motor dysfunction in the patients who had spinal cord injury with spasticity.
RESUMO
In this study, the walnut flowers were fermented using five different probiotics, including two Lactobacillus plantarum, one Lactobacillus bulgaricus, one Lactobacillus casei, and one Lactobacillus rhamnosus. The chemical compositions, antioxidant capacities, and α-glucosidase inhibitory abilities of walnut flowers during fermentation processes were evaluated. The results showed that all the active compounds and bioactivities of the walnut flowers were significantly decreased after 7 days of fermentation, whereas a short-term fermentation (1-3 days) enhanced their bioactivities. Compared to the unfermented sample, L. plantarum (ATCC 8014) and L. rhamnosus (ATCC 53013) increased the ABTS (1.22 and 1.30 times higher) and DPPH radical scavenging activities (up to 1.23 and 1.04 times), respectively. L. plantarum (SWFU D16), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 53013) improved the ferric reducing antioxidant power which was 110.98%, 133.16%, and 104.76% of the unfermented sample. All five probiotics promoted the α-glucosidase inhibitory ability of walnut flowers (maximum 2.18-fold increase). Three phenolic acids and five flavonoids in the fermentation broth were identified by HPLC, where catechin, epicatechin, and catechin gallate were the dominant components. HPLC results demonstrated that these compounds were degraded and transformed in varying degrees under the effects of probiotics. Taken together, a short-term probiotic fermentation could change the active compounds of the walnut flowers and improve their bioactivities. L. plantarum (ATCC 8014) and L. rhamnosus (ATCC 334) are suggested as suitable strains in producing the fermented walnut flowers. The research findings could further support the development and utilization of walnut flowers as a fermented functional food. PRACTICAL APPLICATIONS: Walnut flowers have been used as fermented food in southwestern China, but their active components and functional activities during fermentation processes are still unclear. This study found that different probiotic fermentation exerted a strong and varied influence on the chemical composition and biological activities of the walnut flowers. A short-term fermentation has significantly improved their antioxidant capacities and α-glucosidase inhibitory abilities, whereas the longer period of fermentation, caused a significant loss of both their active compounds and bioactivities. These findings are useful as a reference for the manufacturers of fermented walnut flowers in selecting suitable strains and fermentation time for their products.
Assuntos
Juglans , Probióticos , Antioxidantes/metabolismo , Fermentação , Flores , Probióticos/metabolismo , alfa-Glucosidases/metabolismoRESUMO
BACKGROUND: Methotrexate (MTX) is an important anticancer agent and immunosuppressant with a narrow therapeutic window. Wuzhi capsule (WZC) is an extract of Schisandra which is widely used to treat liver diseases. Co-administration of MTX and WZC is common in the clinical setting, but research on the interaction between WZC and MTX is limited. This study aimed to investigate the effects of WZC on the pharmacokinetics of MTX in rats and to explore the role of membrane transport proteins OAT1/3 and P-gp in the interaction of these drugs. METHODS: Plasma MTX concentration was detected by ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS), and the messenger RNA (mRNA) and protein expression of OAT1/3 and P-gp was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting analyses, respectively. RESULTS: The study results revealed that co-administration of WZC decreased the CLz/F and Vz/F of MTX, increased the Cmax and area under the curve [(AUC)0-24 h] of MTX, and inhibited OAT1/3 expression in the kidney and P-gp expression in the small intestine. CONCLUSIONS: The findings suggested that there is a drug interaction between WZC and MTX and that OAT1/3 in the kidney and P-gp in the small intestine may be the main targets mediating the drug interaction, and attention should be paid when they are used in combination.
RESUMO
Prochiral pyrmetazole can be asymmetrically oxidized into (S)-omeprazole, a proton pump inhibitor that is used to treat gastroesophageal reflux, by an engineered cyclohexanone monooxygenase (CHMOAcineto-Mut) that has high stereoselectivity. CHMOAcineto-Mut is produced by heterologous expression in Escherichia coli, where it is expressed intracellularly. Thus, isolating this useful biocatalyst requires tedious cell disruption and subsequent purification, which hinders its use for industrial purposes. Here, we report the extracellular production of CHMOAcineto-Mut by a methylotrophic yeast, Pichia pastoris, for the first time. The recombinant CHMOAcineto-Mut expressed by P. pastoris showed a higher flavin occupation rate than that produced by E. coli, and this was accompanied by a 3.2-fold increase in catalytic efficiency. At a cell density of 150 g/L cell dry weight, we achieved a recombinant CHMOAcineto-Mut production rate of 1,700 U/L, representing approximately 85% of the total protein secreted into the fermentation broth. By directly employing the pH adjusted supernatant as a biocatalyst, we were able to almost completely transform 10 g/L of pyrmetazole into the corresponding (S)-sulfoxide, with > 99% enantiomeric excess.