Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(7): 835-851, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160797

RESUMO

How tumor cells genetically lose antigenicity and evade immune checkpoints remains largely elusive. We report that tissue-specific expression of the human long noncoding RNA LINK-A in mouse mammary glands initiates metastatic mammary gland tumors, which phenotypically resemble human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein-coupled receptor (GPCR) pathways, attenuating protein kinase A-mediated phosphorylation of the E3 ubiquitin ligase TRIM71. Consequently, LINK-A expression enhanced K48-polyubiquitination-mediated degradation of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and p53. Treatment with LINK-A locked nucleic acids or GPCR antagonists stabilized the PLC components, Rb and p53, and sensitized mammary gland tumors to immune checkpoint blockers. Patients with programmed ccll death protein-1(PD-1) blockade-resistant TNBC exhibited elevated LINK-A levels and downregulated PLC components. Hence we demonstrate lncRNA-dependent downregulation of antigenicity and intrinsic tumor suppression, which provides the basis for developing combinational immunotherapy treatment regimens and early TNBC prevention.


Assuntos
Apresentação de Antígeno/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/imunologia , Oncogenes , RNA Longo não Codificante/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Adenoma/genética , Adenoma/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cell ; 82(8): 1528-1542.e10, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35245436

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a global health concern with no approved drugs. High-protein dietary intervention is currently the most effective treatment. However, its underlying mechanism is unknown. Here, using Drosophila oenocytes, the specialized hepatocyte-like cells, we find that dietary essential amino acids ameliorate hepatic steatosis by inducing polyubiquitination of Plin2, a lipid droplet-stabilizing protein. Leucine and isoleucine, two branched-chain essential amino acids, strongly bind to and activate the E3 ubiquitin ligase Ubr1, targeting Plin2 for degradation. We further show that the amino acid-induced Ubr1 activity is necessary to prevent steatosis in mouse livers and cultured human hepatocytes, providing molecular insight into the anti-NAFLD effects of dietary protein/amino acids. Importantly, split-intein-mediated trans-splicing expression of constitutively active UBR2, an Ubr1 family member, significantly ameliorates obesity-induced and high fat diet-induced hepatic steatosis in mice. Together, our results highlight activation of Ubr1 family proteins as a promising strategy in NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Aminoácidos Essenciais/metabolismo , Aminoácidos Essenciais/farmacologia , Aminoácidos Essenciais/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 121(21): e2319519121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753508

RESUMO

Transforming smallholder farms is critical to global food security and environmental sustainability. The science and technology backyard (STB) platform has proved to be a viable approach in China. However, STB has traditionally focused on empowering smallholder farmers by transferring knowledge, and wide-scale adoption of more sustainable practices and technologies remains a challenge. Here, we report on a long-term project focused on technology scale-up for smallholder farmers by expanding and upgrading the original STB platform (STB 2.0). We created a formalized and standardized process by which to engage and collaborate with farmers, including integrating their feedback via equal dialogues in the process of designing and promoting technologies. Based on 288 site-year of field trials in three regions in the North China Plain over 5 y, we find that technologies cocreated through this process were more easily accepted by farmers and increased their crop yields and nitrogen factor productivity by 7.2% and 28.1% in wheat production and by 11.4% and 27.0% in maize production, respectively. In promoting these technologies more broadly, we created a "one-stop" multistakeholder program involving local government agencies, enterprises, universities, and farmers. The program was shown to be much more effective than the traditional extension methods applied at the STB, yielding substantial environmental and economic benefits. Our study contributes an important case study for technology scale-up for smallholder agriculture. The STB 2.0 platform being explored emphasizes equal dialogue with farmers, multistakeholder collaboration, and long-term investment. These lessons may provide value for the global smallholder research and practitioners.


Assuntos
Agricultura , China , Agricultura/métodos , Fazendeiros , Humanos , Produtos Agrícolas/crescimento & desenvolvimento , Comportamento Cooperativo , Zea mays/crescimento & desenvolvimento , Desenvolvimento Sustentável , Conservação dos Recursos Naturais/métodos , Triticum/crescimento & desenvolvimento , Produção Agrícola/métodos
4.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260148

RESUMO

Evolutionarily conserved Notch signaling is highly sensitive to changes in Notch receptor dose caused by intrinsic and environmental fluctuations. It is well known that epigenetic regulation responds dynamically to genetic, cellular and environmental stresses. However, it is unclear whether the Notch receptor dose is directly regulated at the epigenetic level. Here, by studying the role of the upstream epigenetic regulator Stuxnet (Stx) in Drosophila developmental signaling, we find that Stx promotes Notch receptor mRNA expression by counteracting the activity of Polycomb repressive complex 1 (PRC1). In addition, we provide evidence that Notch is a direct PRC1 target by identifying and validating in vivo the only bona fide Polycomb response element (PRE) among the seven Polycomb group (PcG)-binding sites revealed by DamID-seq and ChIP-seq analysis. Importantly, in situ deletion of this PRE results in increased Notch expression and phenotypes resembling Notch hyperactivation in cell fate specification. These results not only underscore the importance of epigenetic regulation in fine-tuning the Notch activity dose, but also the need to assess the physiological significance of omics-based PcG binding in development.


Assuntos
Proteínas de Drosophila , Epigênese Genética , Animais , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Elementos de Resposta/genética , Receptores Notch/genética , Receptores Notch/metabolismo
5.
Nat Methods ; 20(3): 448-458, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797410

RESUMO

Stimulated Raman scattering (SRS) offers the ability to image metabolic dynamics with high signal-to-noise ratio. However, its spatial resolution is limited by the numerical aperture of the imaging objective and the scattering cross-section of molecules. To achieve super-resolved SRS imaging, we developed a deconvolution algorithm, adaptive moment estimation (Adam) optimization-based pointillism deconvolution (A-PoD) and demonstrated a spatial resolution of lower than 59 nm on the membrane of a single lipid droplet (LD). We applied A-PoD to spatially correlated multiphoton fluorescence imaging and deuterium oxide (D2O)-probed SRS (DO-SRS) imaging from diverse samples to compare nanoscopic distributions of proteins and lipids in cells and subcellular organelles. We successfully differentiated newly synthesized lipids in LDs using A-PoD-coupled DO-SRS. The A-PoD-enhanced DO-SRS imaging method was also applied to reveal metabolic changes in brain samples from Drosophila on different diets. This new approach allows us to quantitatively measure the nanoscopic colocalization of biomolecules and metabolic dynamics in organelles.


Assuntos
Microscopia , Análise Espectral Raman , Microscopia/métodos , Análise Espectral Raman/métodos , Proteínas/metabolismo , Lipídeos
6.
Planta ; 259(5): 106, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554181

RESUMO

MAIN CONCLUSION: The up-regulation of OsmiR5519 results in the decrease of grain size, weight and seed setting rate. OsmiR5519 plays important roles in the process of grain filling and down-regulates sucrose synthase gene RSUS2. MicroRNAs (miRNAs) are one class of small non-coding RNAs that act as crucial regulators of plant growth and development. In rice, the conserved miRNAs were revealed to regulate the yield components, but the function of rice-specific miRNAs has been rarely studied. The rice-specific OsmiR5519 was found to be abundantly expressed during reproductive development, but its biological roles remain unknown. In this study, the function of rice-specific OsmiR5519 was characterized with the miR5519-overexpressing line (miR5519-OE) and miR5519-silenced line (STTM5519). At seedling stage, the content of sucrose, glucose and fructose was obviously lower in the leaves of miR5519-OE lines than those of wild-type (WT) line. The grain size and weight were decreased significantly in miR5519-OE lines, compared to those of WT rice. The cell width of hull in miR5519-OE was smaller than that in WT. The seed setting rate was notably reduced in miR5519-OE lines, but not in STTM5519 lines. Cytological observation demonstrated that the inadequate grain filling was the main reason for the decline of seed setting rate in miR5519-OE lines. The percentage of the defects of grain amounted to 40% in miR5519-OE lines, which almost equaled to the decreased value of seed setting rate. Furthermore, the sucrose synthase gene RSUS2 was identified as a target of OsmiR5519 via RNA ligase-mediated 3'-amplification of cDNA ends (3'-RLM-RACE), dual luciferase assays and transient expression assays. In summary, our results suggest that OsmiR5519 regulates grain size and weight and down-regulates RSUS2 in rice.


Assuntos
Glucosiltransferases , MicroRNAs , Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível , Sementes , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Microb Pathog ; 192: 106703, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763315

RESUMO

Streptococcus equissp.zooepidemicus (SEZ) is a crucial pathogen and contributes to various infections in numerous animal species. Swine streptococcicosis outbreak caused by SEZ has been reported in several countries in recent years. SzM protein is a cell membrane-anchored protein, which exhibits as an important virulence factor of SEZ. Effects of SzM protein on host innate immune need further study. Here, recombinant SzM (rSzM) protein of the SEZ was obtained, and mice were intraperitoneally injected with rSzM protein. We discovered that rSzM protein can recruit neutrophils into the injected site. In further study, neutrophils were isolated and treated with rSzM protein, NETs release were triggered by rSzM protein independently, and GSDMD protein was promoted-expressed and activated. In order to investigate the role of GSDMD in NETs formation, neutrophils isolated from WT mice and GSDMD-/- mice were treated with rSzM protein. The results showed that GSDMD deficiency suppressed the NETs release. In conclusion, SzM protein of SEZ can trigger the NETs release in a GSDMD-depending manner.


Assuntos
Proteínas de Bactérias , Armadilhas Extracelulares , Neutrófilos , Infecções Estreptocócicas , Streptococcus equi , Fatores de Virulência , Animais , Camundongos , Neutrófilos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Streptococcus equi/genética , Streptococcus equi/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Camundongos Knockout , Proteínas Recombinantes/genética , Imunidade Inata , Camundongos Endogâmicos C57BL , Gasderminas , Proteínas de Ligação a Fosfato
8.
J Magn Reson Imaging ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958118

RESUMO

Intracardiac blood flow has long been proposed to play a significant role in cardiac morphology and function. However, absolute blood pressure within the heart has mainly been measured by invasive catheterization, which limits its application. Hemodynamic force (HDF) is the global force of intracavitary blood flow acquired by integrating the intraventricular pressure gradient over the entire ventricle and thus may be a promising tool for accurately characterizing cardiac function. Recent advances in magnetic resonance imaging technology allow for a noninvasive measurement of HDF through both 4D flow cardiac MRI and cine cardiac MRI. The HDF time curve provides comprehensive data for both qualitative and quantitative analysis. In this review, a series of HDF parameters is introduced and a summary of the current literature regarding HDF in clinical practice is presented. Additionally, the current dilemmas and future prospects are discussed in order to contribute to the future research. LEVEL OF EVIDENCE: 5. TECHNICAL EFFICACY: Stage 2.

9.
Langmuir ; 40(26): 13412-13421, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900137

RESUMO

Solar steam generation (SSG) is regarded as an efficient approach for harnessing solar energy to purify polluted or saline water. Herein, we demonstrate a hydrogel composed of cellulose nanofibers (CNFs), polyethylenimine (PEI), and reduced graphene oxide (rGO) that functions as an independent solar steam generator, which shows enhanced solar water evaporation efficiency by incorporating silver nanoparticles (AgNPs). It presented that the presence of AgNPs increases the photothermal conversion efficiency and thermal conductivity of the evaporator and reduces the enthalpy of evaporation. As a result, an outstanding water evaporation rate of 3.62 kg m-2 h-1 and a photothermal conversion efficiency of 96.25% are successfully obtained under one sun illumination. Also, the resulting hydrogel exhibits exceptional mechanical properties, as well as outstanding desalination and salt-resistant abilities during prolonged seawater desalination. In oil/water mixtures, the evaporation of the hydrogel decreases to 2.94 kg m-2 h-1, owing to the oil layer barrier. This work paves a reference approach to produce easily addressed cellulose nanofiber (CNF)-based hydrogel evaporators with significantly enhanced evaporation rates.

10.
Inflamm Res ; 73(1): 35-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147125

RESUMO

OBJECTIVE: Here, we explored the phenotype and function of MAIT cells in the peripheral blood of patients with HSP. METHODS: Blood samples from HSP patients and HDs were assessed by flow cytometry and single-cell RNA sequencing to analyze the proportion, phenotype, and function of MAIT cells. Th-cytokines in the serum of HSP patients were analyzed by CBA. IgA in cocultured supernatant was detected by CBA to analyze antibody production by B cells. RESULTS: The percentage of MAIT cells in HSP patients was significantly reduced compared with that in HDs. Genes related to T cell activation and effector were up-regulated in HSP MAIT cells, indicating a more activated phenotype. In addition, HSP MAIT cells displayed a Th2-like profile with the capacity to produce more IL-4 and IL-5, and IL-4 was correlated with IgA levels in the serum of HSP patients. Furthermore, CD40L was up-regulated in HSP MAIT cells, and CD40L+ MAIT cells showed an increased ability to produce IL-4 and to enhance IgA production by B cells. CONCLUSION: Our data demonstrate that MAIT cells in HSP patients exhibit an activated phenotype. The enhanced IL-4 production and CD40L expression of MAIT cells in HSP patients could take part in the pathogenesis of HSP.


Assuntos
Vasculite por IgA , Células T Invariantes Associadas à Mucosa , Humanos , Formação de Anticorpos , Ligante de CD40 , Imunoglobulina A , Interleucina-4
11.
Inorg Chem ; 63(38): 17797-17808, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39257279

RESUMO

Polymer hydrogels have a wide range of applications in the field of flexible wearable devices from the perspective of easy commercialization and environmental compatibility. However, traditional hydrogels often fail to achieve adequate mechanical strength and performance such as toughness, resilience, and ionic conductivity. Herein, a significant enhancement of tensile strength in 2 orders of magnitude (from 36 kPa to 1.5 MPa) is obtained by the introduction of hydrotalcite into polymer network via multiple, multilevel, and strong interactions of strengthened interface interactions, and the enhancement effect is superior to most of known records. Meanwhile, the enhanced conductivity may be rationally attributed to effective channels of hydrotalcite for ion transport. As a result, high toughness (9.5 MJ/m3), stretchability (1520%), excellent resilience (100% rebound of 400% strain), high conductivity (2.6 mS/cm), and low-temperature resistance are successfully achieved. The work shows an efficient approach to design desired ultratough and multifunctional hydrogels.

12.
BMC Infect Dis ; 24(1): 1010, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300331

RESUMO

PURPOSE: The prevalence of biliary tract diseases, which are common gastrointestinal disorders, is steadily rising. If it progresses to sepsis or septic shock, it can endanger the patient's life. Therefore, it is crucial to promptly diagnose bacterial infection in individuals suffering from biliary diseases and comprehend the risk factors associated with infection. The objective of this study was to examine the types of bacteria present in the bile of patients with biliary tract diseases, assess any alterations in their susceptibility to antimicrobial agents, and identify the risk factors contributing to the development of infection in these patients. PATIENTS AND METHODS: From June 2019 to November 2022, 317 patients of biliary tract diseases with positive bile culture were included in this hospital-based descriptive analysis. The hospital's computerized medical records were used to collect data on demographic information (including gender, age, and occupation), laboratory, and clinical findings, physical examination results, comorbidities, basic diseases, treatment history, complications, and in-hospital outcomes. The study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) principles. RESULTS: Of the 317 patients with positive biliary tract diseases, 247 had benign diseases and 70 had malignant diseases. Patients with benign disease experienced a higher prevalence of statistically significant symptoms such as abdominal pain (81.4% vs. 57.1%, P = 0.000), nausea (31.2% vs. 14.3%, P = 0.005), vomiting (30.0% vs. 12.9%, P = 0.004), and chills (10.9% vs. 2.9%, P = 0.039), while jaundice (12.6% vs. 37.1%, P = 0.000) was more common in patients with malignant disease. At the species level, Escherichia coli (105; 40.5%), Klebsiella pneumoniae (41; 15.8%), and Pseudomonas aeruginosa (30; 11.6%) were the most commonly found Gram-negative bacterial strains in biliary tract infection. Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa were most susceptible to tigecycline, ertapenem and ceftazidime/avibactam, respectively. CONCLUSION: Gram-negative bacteria are the most commonly isolated biliary bacteria. Clinical doctors should pay attention to patients with malignant diseases with low hemoglobin, high total bilirubin and high alkaline phosphatase. Carbapenems, tigecycline, and minocycline are the recommended antibiotics for Enterobacteriaceae. In recent years, the proportion of enterococcus has gradually increased, and clinical attention should be paid to enterococcus infection. Linezolid and vancomycin were recommended for the treatment of Enterococci infections. Overall, this work can provide reference for clinical diagnosis, treatment and effective interventions.


Assuntos
Antibacterianos , Bile , Doenças Biliares , Centros de Atenção Terciária , Humanos , Masculino , Feminino , Doenças Biliares/microbiologia , Doenças Biliares/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Pessoa de Meia-Idade , Idoso , Adulto , Bile/microbiologia , Antibacterianos/uso terapêutico , Fatores de Risco , Idoso de 80 Anos ou mais , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/tratamento farmacológico , Prevalência , Adulto Jovem
13.
BMC Geriatr ; 24(1): 762, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285322

RESUMO

OBJECTIVE: To explore the prevalence and potential influencing factors of social frailty among community-dwelling older adults from a global perspective. METHODS: Systematic searches were conducted on multiple databases including CNKI, VIP, Wanfang Data, CBM, Pubmed, Cochrane Library, Web of Science, and Embase from inception to January 9, 2024. Two researchers performed a thorough literature search, gathered data, and independently evaluated the quality of the articles. RESULTS: 2,426 literatures were examined, 45 were found to meet the specified criteria for inclusion, encompassing 314,454 participants. The combined prevalence of social pre-frailty and social frailty among community-dwelling older adults were found to be 34.5% and 21.1%, respectively. Depression, activities of daily living (ADL), physical inactivity, motor deficits, cognitive impairment, and physical frailty are potential risk factors. CONCLUSIONS: Social pre-frailty and social frailty are frequent challenges faced by older adults living in the community. The prevalence of these conditions has been on the rise in recent years, underscoring the importance of implementing effective interventions. Early identification and intervention for individuals at risk of social frailty are essential for promoting healthy and active aging globally.


Assuntos
Idoso Fragilizado , Fragilidade , Vida Independente , Humanos , Vida Independente/tendências , Vida Independente/psicologia , Idoso , Prevalência , Idoso Fragilizado/psicologia , Fragilidade/epidemiologia , Fragilidade/psicologia , Fragilidade/diagnóstico , Atividades Cotidianas/psicologia , Fatores de Risco , Idoso de 80 Anos ou mais
14.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474039

RESUMO

Ascidian larvae undergo tail elongation and notochord lumenogenesis, making them an ideal model for investigating tissue morphogenesis in embryogenesis. The cellular and mechanical mechanisms of these processes have been studied; however, the underlying molecular regulatory mechanism remains to be elucidated. In this study, assays for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were applied to investigate potential regulators of the development of ascidian Ciona savignyi larvae. Our results revealed 351 and 138 differentially accessible region genes through comparisons of ATAC-seq data between stages 21 and 24 and between stages 24 and 25, respectively. A joint analysis of RNA-seq and ATAC-seq data revealed a correlation between chromatin accessibility and gene transcription. We further verified the tissue expression patterns of 12 different genes. Among them, Cs-matrix metalloproteinase 24 (MMP24) and Cs-krüppel-like factor 5 (KLF5) were highly expressed in notochord cells. Functional assay results demonstrated that both genes are necessary for notochord lumen formation and expansion. Finally, we performed motif enrichment analysis of the differentially accessible regions in different tailbud stages and summarized the potential roles of these motif-bearing transcription factors in larval development. Overall, our study found a correlation between gene expression and chromatin accessibility and provided a vital resource for understanding the mechanisms of the development of ascidian embryos.


Assuntos
Ciona , Urocordados , Animais , Cromatina , Urocordados/genética , Sequenciamento de Cromatina por Imunoprecipitação , Morfogênese , Fatores de Transcrição/genética
15.
Int J Mol Sci ; 25(19)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39408881

RESUMO

Tannins, one of the most common anti-nutritional factors in feed, can be effectively degraded by various enzymes secreted by Aspergillus tubingensis (A. tubingensis). The cultivation method of fungi significantly impacts gene expression, which influences the production of enzymes and metabolites. In this study, we analyzed the tannin biodegredation efficiency and the transcriptomic responses of A. tubingensis in liquid and solid cultures with tannin added. The observed morphology of A. tubingensis resembled typical fungal hyphae of mycelium submerged and grown in liquid cultures, while mainly spore clusters were observed in solid cultures. Furthermore, the tannin biodegredation efficiency and protein secretion of A. tubingensis in liquid cultures were significantly higher than in solid cultures. Additionally, 54.6% of the 11,248 differentially expressed genes were upregulated in liquid cultures, including AtWU_03490 (encoding ABC multidrug transporter), AtWU_03807 (ribonuclease III), AtWU_10270 (peptidyl-tRNA hydrolase), and AtWU_00075 (arabinogalactan endo-1,4-beta-galactosidase). Functional and gene ontology enrichment analyses indicated upregulation in processes including oxidation reduction, drug metabolism, and monocarboxylic acid metabolism. Overall, this study provides insight into the transcriptomic response to tannin biodegradation by A. tubingensis in different cultures and reveals that liquid cultures induce greater transcriptomic variability compared to solid cultures.


Assuntos
Aspergillus , Regulação Fúngica da Expressão Gênica , Taninos , Transcriptoma , Aspergillus/genética , Aspergillus/metabolismo , Taninos/metabolismo , Perfilação da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
16.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338486

RESUMO

Egg white proteins pose notable limitations in emulsion applications due to their inadequate wettability and interfacial instability. Polyphenol-driven alterations in proteins serve as an effective strategy for optimizing their properties. Herein, covalent and non-covalent complexes of egg white proteins-proanthocyanins were synthesized. The analysis of structural alterations, amino acid side chains and wettability was performed. The superior wettability (80.00° ± 2.23°) and rigid structure (2.95 GPa) of covalent complexes established favorable conditions for their utilization in emulsions. Furthermore, stability evaluation, digestion kinetics, free fatty acid (FFA) release kinetics, and correlation analysis were explored to unravel the impact of covalent and non-covalent modification on emulsion stability, dynamic digestion process, and interlinkages. Emulsion stabilized by covalent complex exhibited exceptional stabilization properties, and FFA release kinetics followed both first-order and Korsmeyer-Peppas models. This study offers valuable insights into the application of complexes of proteins-polyphenols in emulsion systems and introduces an innovative approach for analyzing the dynamics of the emulsion digestion process.


Assuntos
Digestão , Ácidos Graxos não Esterificados , Emulsões/química , Ácidos Graxos não Esterificados/metabolismo , Proteínas do Ovo , Tamanho da Partícula
17.
J Am Chem Soc ; 145(47): 25664-25672, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37921495

RESUMO

Polymeric spherulites are typically formed by melt crystallization: spherulitic growth in solution is rare and requires complex polymers and dilute solutions. Here, we report the mild and unique formation of luminescent spherulites at room temperature via the simple molecule benzene-1,4-dithiol (BDT). Specifically, BDT polymerized into oligomers (PBDT) via disulfide bonds and assembled into uniform supramolecular nanoparticles in aqueous buffer; these nanoparticles were then dissolved back into PBDT in a good solvent (i.e., dimethylformamide) and underwent chain elongation to form spherulites (rPBDT) in 10 min. The spherulite geometry was modulated by changing the PBDT concentration and reaction time. Due to the step-growth polymerization and reorganization of PBDT, these spherulites not only exhibited robust structure but also showed broad clusterization-triggered emission. The biocompatibility and efficient cellular uptake of the spherulites further underscore their value as traceable drug carriers. This system provides a new pathway for designing versatile superstructures with value for hierarchical assembly of small molecules into a complicated biological system.


Assuntos
Nanopartículas , Polímeros , Cristalização , Polímeros/química , Congelamento
18.
Small ; : e2305875, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054799

RESUMO

Synthetic hydrogel strain sensors rarely exhibit a comprehensive combination of mechanical properties such as ultra-stretchability, ultrafast self-healing, and high sensitivity. Herein, seven small molecule enhanced mechanical behaviors of polymer-cluster based hydrogels are demonstrated. The oxidized polyethyleneimine/polymeric acrylic acid (ohPEI/PAA) hydrogels with aromatic formic acids as supramolecular cross-linkers are prepared by simultaneous formation of ohPEI polymer clusters and PAA upon the addition of ammonium persulfate. The optimized hydrogel adhesive exhibits comprehensive excellent properties, such as high extensibility (up to 12 298%), real-time mechanical self-healing capability (<1 s, 93% efficiency), high uniformity, underwater adhesivity, and water-sealing ability. The proper binding strength of hydrogel and skin (47 kPa) allows the hydrogel to be utilized as highly sensitive (gauge factor:16.08), highly conductive (2.58 mS cm-1 ), and underwater strain sensors. Specially, the adhesive strength of the adhesive to wood after dehydration is extremely high, reaching up to 29.59 MPa. Additionally, when glycerol is introduced, the obtained gel maintains the physical properties even at harsh-temperature conditions (-40 to 80 °C). It presents that multiple and hierarchical non-covalent interactions including multiple hydrogen bonding interactions, π-π stacking, electrostatic interactions, and dipole-dipole interactions of polymer clusters, allow for the energy dissipation and contribute to the excellent performance of the hydrogel.

19.
Acc Chem Res ; 55(19): 2833-2847, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36121350

RESUMO

Magnetic resonance imaging (MRI) is a clinical imaging modality that provides high-resolution images of soft tissues, including cancerous lesions. Stable gadolinium(III) chelates have been used as contrast agents (CA) in MRI to enhance the contrast between the tissues of interest and surrounding tissues for accurate diagnostic imaging. Magnetic resonance molecular imaging (MRMI) of cancer requires targeted CA to specifically elucidate cancer-associated molecular processes and can provide high-resolution delineation and characterization of cancer for precision medicine. The main challenge for MRMI is the lack of sufficient sensitivity to detect the low concentration of the cellular oncogenic markers. In addition, targeted CA must satisfy regulatory safety requirements prior to clinical development. Up to now, there is no FDA-approved targeted CA for MRMI of cancer.In this Account, we discuss the latest developments in the design and development of clinically translatable targeted CA for MRMI of cancer, with an emphasis on our own research. The primary limitation of MRMI can be overcome by designing small molecular targeted CA to target abundant cancer-specific targets found in the tumor microenvironment (TME). For example, aggressive tumors have a unique extracellular matrix (ECM) composed of oncoproteins, which can be used as targetable markers for MRMI. We have designed and prepared small peptide conjugates of clinical contrast agents, including Gd-DTPA and Gd-DOTA, to target fibrin-fibronectin clots in tumors. These small molecular CA have been effective in enhancing MRMI detection of solid tumors and have demonstrated the ability to detect submillimeter cancer micrometastases in mouse tumor models, exceeding the detection limit of current clinical imaging modalities. We have also identified extradomain B fibronectin (EDB-FN), an oncofetal subtype of fibronectin, as a promising TME target to leverage in the design and development of small peptide targeted CA for clinical translation. The expression level of EDB-FN is correlated with invasiveness of cancer cells and poor patient survival of multiple cancer types. ZD2 peptide with a sequence of seven amino acids (TVRTSAD) was identified to specifically bind to the EDB protein fragment. Several ZD2 conjugates of macrocyclic GBCA, including Gd-DOTA and Gd(HP-DO3A), have been synthesized and tested in mouse tumor models. ZD2-N3-Gd(HP-DO3A) (MT218) with a high r1 relaxivity was selected as the lead agent for clinical translation. The physicochemical properties and preclinical assessments of MT218 are summarized in this Account. MRMI of EDB-FN with MT218 can effectively detect invasive tumors of multiple cancers with risk-stratification and monitor tumor response to anticancer therapies in mouse models. Currently, MT218 is in clinical trials for precision cancer MRMI. Herein, we will show that using targeted MRI contrast agents specific to abundant TME biomarkers is a pragmatic solution for effective precision cancer imaging in high spatial resolution. And thus, we illustrate a replicable approach for CA development that is vital for cancer MRMI.


Assuntos
Gadolínio , Neoplasias , Aminoácidos , Animais , Meios de Contraste/química , Fibrina , Fibronectinas/metabolismo , Gadolínio/química , Gadolínio DTPA , Compostos Heterocíclicos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Camundongos , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Proteínas Oncogênicas , Compostos Organometálicos , Peptídeos , Microambiente Tumoral
20.
Cardiovasc Diabetol ; 22(1): 216, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592255

RESUMO

BACKGROUND: Myocardial microvascular injury is the key event in early diabetic heart disease. The injury of myocardial microvascular endothelial cells (CMECs) is the main cause and trigger of myocardial microvascular disease. Mitochondrial calcium homeostasis plays an important role in maintaining the normal function, survival and death of endothelial cells. Considering that mitochondrial calcium uptake 1 (MICU1) is a key molecule in mitochondrial calcium regulation, this study aimed to investigate the role of MICU1 in CMECs and explore its underlying mechanisms. METHODS: To examine the role of endothelial MICU1 in diabetic cardiomyopathy (DCM), we used endothelial-specific MICU1ecKO mice to establish a diabetic mouse model and evaluate the cardiac function. In addition, MICU1 overexpression was conducted by injecting adeno-associated virus 9 carrying MICU1 (AAV9-MICU1). Transcriptome sequencing technology was used to explore underlying molecular mechanisms. RESULTS: Here, we found that MICU1 expression is decreased in CMECs of diabetic mice. Moreover, we demonstrated that endothelial cell MICU1 knockout exacerbated the levels of cardiac hypertrophy and interstitial myocardial fibrosis and led to a further reduction in left ventricular function in diabetic mice. Notably, we found that AAV9-MICU1 specifically upregulated the expression of MICU1 in CMECs of diabetic mice, which inhibited nitrification stress, inflammatory reaction, and apoptosis of the CMECs, ameliorated myocardial hypertrophy and fibrosis, and promoted cardiac function. Further mechanistic analysis suggested that MICU1 deficiency result in excessive mitochondrial calcium uptake and homeostasis imbalance which caused nitrification stress-induced endothelial damage and inflammation that disrupted myocardial microvascular endothelial barrier function and ultimately promoted DCM progression. CONCLUSIONS: Our findings demonstrate that MICU1 expression was downregulated in the CMECs of diabetic mice. Overexpression of endothelial MICU1 reduced nitrification stress induced apoptosis and inflammation by inhibiting mitochondrial calcium uptake, which improved myocardial microvascular function and inhibited DCM progression. Our findings suggest that endothelial MICU1 is a molecular intervention target for the potential treatment of DCM.


Assuntos
Proteínas de Ligação ao Cálcio , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Proteínas de Transporte da Membrana Mitocondrial , Animais , Camundongos , Cálcio , Dependovirus , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/prevenção & controle , Células Endoteliais , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA