RESUMO
BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.
Assuntos
Lesão Pulmonar Aguda , Antígeno de Macrófago 1 , Animais , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Adesão Celular , Dissulfetos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Compostos de Sulfidrila/metabolismoRESUMO
Cantharidin (CTD) is the main active component in the traditional Chinese medicine Mylabris and an effective anti-tumor agent. However, it is relatively toxic and exhibits nephrotoxicity, which limits its clinical use. However, its toxic mechanism is not clear. The toxic effects of CTD exposure on the kidney and the protective effect of resveratrol (RES) were studied in a mouse model, by determination of serum biochemical and renal antioxidant indicators, histopathological and ultrastructural observation, and metabonomics. After CTD exposure, serum uric acid, creatinine, and tissue oxidative stress indicators increased, and the renal glomerular and tubular epithelial cells showed clear pathological damage. Ultrastructure observation revealed marked mitochondrial swelling, endoplasmic reticulum dilation, and the presence of autophagy lysosomes in glomerular epithelial cells. RES ameliorated the renal injury induced by CTD. Metabonomics analysis indicated that CTD can induce apoptosis and oxidative damage in kidney cells, mainly by disrupting sphingolipid and glutathione metabolism, increasing sphingosine and sphingomyelin levels, and decreasing glutathione levels. RES counteracts these effects by regulating renal cell proliferation, the inflammatory response, oxidative stress, and apoptosis, by improving the levels of phosphatidylcholine (PC), LysoPC, and lysophosphatidyl glycerol in the glycerophospholipid metabolism pathway, thereby reducing CTD-induced nephrotoxicity. The mechanisms of CTD-induced renal injury and the protective effect of RES were revealed by metabonomics, providing a basis for evaluating clinical treatment regimens to reduce CTD-induced nephrotoxicity.
Assuntos
Cantaridina , Rim , Metabolômica , Estresse Oxidativo , Resveratrol , Animais , Resveratrol/farmacologia , Camundongos , Masculino , Cantaridina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Apoptose/efeitos dos fármacos , Cromatografia Líquida , Antioxidantes/farmacologia , Espectrometria de MassasRESUMO
Sarcomas, particularly undifferentiated small round cell sarcomas of bone and soft tissue, pose significant diagnostic challenges due to their nonspecific morphology and the necessity for comprehensive molecular analyses. This paper discusses a rare case of round cell sarcoma exhibiting the EWSR1-CREM fusion, offering insights into the complexities of its diagnosis and management. The patient, a 15-year-old female with a history of Type 1 diabetes, presented with persistent right thigh tenderness and swelling. MRI revealed a large necrotic mass in the retroperitoneal region. Histological analysis showed a well-demarcated tumor with diverse cellular morphologies and distinct necrotic areas. Immunohistochemical (IHC) tests identified dot-like staining for Desmin and Vimentin but negative results for several markers, including Cytokeratin and CD45. Strong ALK positivity was noted. Next-generation sequencing with the Illumina TruSight™ Oncology 500 assay revealed the fusion gene EWSR1-CREM, along with benign and uncertain mutations in other genes. The tumor's morphology and immunoprofile, along with molecular findings, led to a diagnosis of round cell sarcoma with EWSR1-CREM fusion. This case adds to the spectrum of tumors associated with this fusion, often presenting diverse morphologies. The rarity of EWSR1-CREM fusion sarcomas poses a challenge in treatment, highlighted by the development of pulmonary metastases and disease progression after surgical excision in this patient despite the lack of an effective targeted therapy. In conclusion, this case emphasizes the need for a multidisciplinary diagnostic approach in complex sarcomas and highlights the importance of continued research on rare sarcomas, their genetic underpinnings, and potential therapeutic targets.
Assuntos
Modulador de Elemento de Resposta do AMP Cíclico , Proteína EWS de Ligação a RNA , Sarcoma , Humanos , Feminino , Sarcoma/genética , Sarcoma/diagnóstico , Sarcoma/cirurgia , Proteína EWS de Ligação a RNA/genética , AdolescenteRESUMO
Extracellular protein disulfide isomerase (PDI) is a promising target for thrombotic-related diseases. Four potent PDI inhibitors with unprecedented chemical architectures, piericones A-D (1-4), were isolated from Pieris japonica. Their structures were elucidated by spectroscopic data analysis, chemical methods, quantum 13C nuclear magnetic resonance DP4+ and electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Piericones A (1) and B (2) were nanomolar noncompetitive PDI inhibitors possessing an unprecedented 3,6,10,15-tetraoxatetracyclo[7.6.0.04,9.01,12]pentadecane motif with nine contiguous stereogenic centers. Their biosynthetic pathways were proposed to include a key intermolecular aldol reaction and an intramolecular 1,2-migration reaction. Piericone A (1) significantly inhibited in vitro platelet aggregation and fibrin formation and in vivo thrombus formation via the inhibition of extracellular PDI without increasing the bleeding risk. The molecular docking and dynamics simulation of 1 and 2 provided a novel structure basis to develop PDI inhibitors as potent antithrombotics.
Assuntos
Isomerases de Dissulfetos de Proteínas , Trombose , Humanos , Isomerases de Dissulfetos de Proteínas/química , Plaquetas/metabolismo , Fibrinolíticos/metabolismo , Simulação de Acoplamento Molecular , Trombose/metabolismoRESUMO
INTRODUCTION: Gliomas, a type of brain neoplasm, are prevalent and often fatal. Molecular diagnostics have improved understanding, but treatment options are limited. This study investigates the role of INTS9 in processing small nuclear RNA (snRNA), which is crucial to generating mature messenger RNA (mRNA). We aim to employ advanced bioinformatics analyses with large-scale databases and conduct functional experiments to elucidate its potential role in glioma therapeutics. MATERIALS AND METHODS: We collected genomic, proteomic, and Whole-Exon-Sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) for bioinformatic analyses. Then, we validated INTS9 protein expression through immunohistochemistry and assessed its correlation with P53 and KI67 protein expression. Gene Set Enrichment Analysis (GSEA) was performed to identify altered signaling pathways, and functional experiments were conducted on three cell lines treated with siINTS9. Then, we also investigate the impacts of tumor heterogeneity on INTS9 expression by integrating single-cell sequencing, 12-cell state prediction, and CIBERSORT analyses. Finally, we also observed longitudinal changes in INTS9 using the Glioma Longitudinal Analysis (GLASS) dataset. RESULTS: Our findings showed increased INTS9 levels in tumor tissue compared to non-neoplastic components, correlating with high tumor grading and proliferation index. TP53 mutation was the most notable factor associated with upregulated INTS9, along with other potential contributors, such as combined chromosome 7 gain/10 loss, TERT promoter mutation, and increased Tumor Mutational Burden (TMB). In GSEA analyses, we also linked INTS9 with enhanced cell proliferation and inflammation signaling. Downregulating INTS9 impacted cellular proliferation and cell cycle regulation during the function validation. In the context of the 12 cell states, INTS9 correlated with tumor-stem and tumor-proliferative-stem cells. CIBERSORT analyses revealed increased INTS9 associated with increased macrophage M0 and M2 but depletion of monocytes. Longitudinally, we also noticed that the INTS9 expression declined during recurrence in IDH wildtype. CONCLUSION: This study assessed the role of INTS9 protein in glioma development and its potential as a therapeutic target. Results indicated elevated INTS9 levels were linked to increased proliferation capacity, higher tumor grading, and poorer prognosis, potentially resulting from TP53 mutations. This research highlights the potential of INTS9 as a promising target for glioma treatment.
RESUMO
INTRODUCTION: Glioblastoma (GBM) is the most common and lethal brain tumor. The current treatment is surgical removal combined with radiotherapy and chemotherapy, Temozolomide (TMZ). However, tumors tend to develop TMZ resistance which leads to therapeutic failure. Ancient ubiquitous protein 1 (AUP1) is a protein associated with lipid metabolism, which is widely expressed on the surface of ER and Lipid droplets, involved in the degradation of misfolded proteins through autophagy. It has recently been described as a prognostic marker in renal tumors. Here, we aim to use sophisticated bioinformatics and experimental validation to characterize the AUP1's role in glioma. MATERIAL AND METHODS: We collected the mRNA, proteomics, and Whole-Exon-Sequencing from The Cancer Genome Atlas (TCGA) for bioinformatics analyses. The analyses included the expression difference, Kaplan-Meier-survival, COX-survival, and correlation to the clinical factors (tumor mutation burden, microsatellite instability, and driven mutant genes). Next, we validated the AUP1 protein expression using immunohistochemical staining on the 78 clinical cases and correlated them with P53 and KI67. Then, we applied GSEA analyses to identify the altered signalings and set functional experiments (including Western Blot, qPCR, BrdU, migration, cell-cycle, and RNAseq) on cell lines when supplemented with small interfering RNA targeting the AUP1 gene (siAUP1) for further validation. We integrated the single-cell sequencing and CIBERSORT analyses at the Chinese Glioma Genome Atlas (CGGA) and Glioma Longitudinal AnalySiS (GLASS) dataset to rationale the role of AUP1 in glioma. RESULTS: Firstly, the AUP1 is a prognostic marker, increased in the tumor component, and correlated with tumor grade in both transcriptomes and protein levels. Secondly, we found higher AUP1 associated with TP53 status, Tumor mutation burden, and increased proliferation. In the function validation, downregulated AUP1 expression merely impacted the U87MG cells' proliferation instead of altering the lipophagy activity. From the single-cell sequencing and CIBERSORT analyses at CGGA and GLASS data, we understood the AUP1 expression was affected by the tumor proliferation, stromal, and inflammation compositions, particularly the myeloid and T cells. In the longitudinal data, the AUP1 significantly dropped in the recurrent IDH wildtype astrocytoma, which might result from increased AUP1-cold components, including oligodendrocytes, endothelial cells, and pericytes. CONCLUSION: According to the literature, AUP1 regulates lipophagy by stabilizing the ubiquitination of lipid droplets. However, we found no direct link between AUP1 suppression and altered autophagy activity in the functional validation. Instead, we noticed AUP1 expression associated with tumor proliferation and inflammatory status, contributed by myeloid cells and T cells. In addition, the TP53 mutations seem to play an important role here and initiate inflamed microenvironments. At the same time, EGFR amplification and Chromosome 7 gain combined 10 loss are associated with increased tumor growth related to AUP1 levels. This study taught us that AUP1 is a poorer predictive biomarker associated with tumor proliferation and could report inflamed status, potentially impacting the clinical application.
RESUMO
Glioblastoma is the most common primary central nervous system tumor in adults. Angiotensin II receptor blockers (ARBs) are broadly applied to treat hypertension. Moreover, research has revealed that ARBs have the capacity to suppress the growth of several cancer types. In this study, we assessed the effects of three ARBs with the ability to cross the blood brain barrier (telmisartan, valsartan and fimasartan) on cell proliferation in three glioblastoma multiforme (GBM) cell lines. Telmisartan markedly suppressed the proliferation, migration, and invasion of these three GBM cell lines. Microarray data analysis revealed that telmisartan regulates DNA replication, mismatch repair, and the cell cycle pathway in GBM cells. Furthermore, telmisartan induced G0/G1 phase arrest and apoptosis. The bioinformatic analysis and western blotting results provide evidence that SOX9 is a downstream target of telmisartan. Telmisartan also suppressed tumor growth in vivo in an orthotopic transplant mouse model. Therefore, telmisartan is a potential treatment for human GBM.
RESUMO
PURPOSE: Papillary thyroid cancer (PTC) is the most common endocrine malignancy with a fast-growing incidence in recent decades. HOTAIR as a long non-coding RNA has been shown to be highly expressed in papillary thyroid cancer tissues with only a limited understanding of its functional roles and downstream regulatory mechanisms in papillary thyroid cancer cells. METHODS: We applied three thyroid cancer cell lines (MDA-T32, MDA-T41 and K1) to investigate the phenotypic influence after gain or loss of HOTAIR. The Cancer Genome Atlas (TCGA) database were utilised to select candidate genes possibly regulated by HOTAIR with validation in the cellular system and immunohistochemical (IHC) staining of PTC tissues. RESULTS: We observed HOTAIR was highly expressed in MDA-T32 cells but presents significantly decreased levels in MDA-T41 and K1 cells. HOTAIR knockdown in MDA-T32 cells significantly suppressed proliferation, colony formation, migration with cell cycle retardation at G1 phase. On the contrary, HOTAIR overexpression in MDA-T41 cells dramatically enhanced proliferation, colony formation, migration with cell cycle driven toward S and G2/M phases. Similar phenotypic effects were also observed as overexpressing HOTAIR in K1 cells. To explore novel HOTAIR downstream mechanisms, we analyzed TCGA transcriptome in PTC tissues and found DLX1 negatively correlated to HOTAIR, and its lower expression associated with reduced progression free survival. We further validated DLX1 gene was epigenetically suppressed by HOTAIR via performing chromatin immunoprecipitation. Moreover, IHC staining shows a significantly stepwise decrease of DLX1 protein from normal thyroid tissues to stage III PTC tissues. CONCLUSIONS: Our study pointed out that HOTAIR is a key regulator of cellular malignancy and its epigenetic suppression on DLX1 serves as a novel biomarker to evaluate the PTC disease progression.
RESUMO
Glioblastoma is the most frequent and lethal primary central nervous system tumor in adults, accounting for around 15% of intracranial neoplasms and 40-50% of all primary malignant brain tumors, with an annual incidence of 3-6 cases per 100,000 population. Despite maximum treatment, patients only have a median survival time of 15 months. Metformin is a biguanide drug utilized as the first-line medication in treating type 2 diabetes. Recently, researchers have noticed that metformin can contribute to antineoplastic activity. The objective of this study is to investigate the mechanism of metformin as a potential adjuvant treatment drug in glioblastoma. Glioblastoma cell lines U87MG, LNZ308, and LN229 were treated with metformin, and several cellular functions and metabolic states were evaluated. First, the proliferation capability was investigated using the MTS assay and BrdU assay, while cell apoptosis was evaluated using the annexin V assay. Next, a wound-healing assay and mesenchymal biomarkers (N-cadherin, vimentin, and Twist) were used to detect the cell migration ability and epithelial-mesenchymal transition (EMT) status of tumor cells. Gene set enrichment analysis (GSEA) was applied to the transcriptome of the metformin-treated glioblastoma cell line. Then, DCFH-DA and MitoSOX Red dyes were used to quantify reactive oxygen species (ROS) in the cytosol and mitochondria. JC-1 dye and Western blotting analysis were used to evaluate mitochondrial membrane potential and biogenesis. In addition, the combinatory effect of temozolomide (TMZ) with metformin treatment was assessed by combination index analysis. Metformin could decrease cell viability, proliferation, and migration, increase cell apoptosis, and disrupt EMT in all three glioblastoma cell lines. The GSEA study highlighted increased ROS and hypoxia in the metformin-treated glioblastoma cells. Metformin increased ROS production, impaired mitochondrial membrane potential, and reduced mitochondrial biogenesis. The combined treatment of metformin and TMZ had U87 as synergistic, LNZ308 as antagonistic, and LN229 as additive. Metformin alone or combined with TMZ could suppress mitochondrial transcription factor A, Twist, and O6-methylguanine-DNA methyltransferase (MGMT) proteins in TMZ-resistant LN229 cells. In conclusion, our study showed that metformin decreased metabolic activity, proliferation, migration, mitochondrial biogenesis, and mitochondrial membrane potential and increased apoptosis and ROS in some glioblastoma cells. The sensitivity of the TMZ-resistant glioblastoma cell line to metformin might be mediated via the suppression of mitochondrial biogenesis, EMT, and MGMT expression. Our work provides new insights into the choice of adjuvant agents in TMZ-resistant GBM therapy.
Assuntos
Neoplasias Encefálicas , Diabetes Mellitus Tipo 2 , Glioblastoma , Metformina , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA , Diabetes Mellitus Tipo 2/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/metabolismo , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , O(6)-Metilguanina-DNA Metiltransferase/genética , Espécies Reativas de Oxigênio/farmacologia , Temozolomida/uso terapêuticoRESUMO
OBJECTIVE: Malformations of cortical development (MCD), including focal cortical dysplasia (FCD), are the most common cause of drug-resistant focal epilepsy in children. Histopathological lesion characterisation demonstrates abnormal cell types and lamination, alterations in myelin (typically co-localised with iron), and sometimes calcification. Quantitative susceptibility mapping (QSM) is an emerging MRI technique that measures tissue magnetic susceptibility (χ) reflecting it's mineral composition. We used QSM to investigate abnormal tissue composition in a group of children with focal epilepsy with comparison to effective transverse relaxation rate (R2*) and Synchrotron radiation X-ray fluorescence (SRXRF) elemental maps. Our primary hypothesis was that reductions in χ would be found in FCD lesions, resulting from alterations in their iron and calcium content. We also evaluated deep grey matter nuclei for changes in χ with age. METHODS: QSM and R2* maps were calculated for 40 paediatric patients with suspected MCD (18 histologically confirmed) and 17 age-matched controls. Patients' sub-groups were defined based on concordant electro-clinical or histopathology data. Quantitative investigation of QSM and R2* was performed within lesions, using a surface-based approach with comparison to homologous regions, and within deep brain regions using a voxel-based approach with regional values modelled with age and epilepsy as covariates. Synchrotron radiation X-ray fluorescence (SRXRF) was performed on brain tissue resected from 4 patients to map changes in iron, calcium and zinc and relate them to MRI parameters. RESULTS: Compared to fluid-attenuated inversion recovery (FLAIR) or T1-weighted imaging, QSM improved lesion conspicuity in 5% of patients. In patients with well-localised lesions, quantitative profiling demonstrated decreased χ, but not R2*, across cortical depth with respect to the homologous regions. Contra-lateral homologous regions additionally exhibited increased χ at 2-3 mm cortical depth that was absent in lesions. The iron decrease measured by the SRXRF in FCDIIb lesions was in agreement with myelin reduction observed by Luxol Fast Blue histochemical staining. SRXRF analysis in two FCDIIb tissue samples showed increased zinc and calcium in one patient, and decreased iron in the brain region exhibiting low χ and high R2* in both patients. QSM revealed expected age-related changes in the striatum nuclei, substantia nigra, sub-thalamic and red nucleus. CONCLUSION: QSM non-invasively revealed cortical/sub-cortical tissue alterations in MCD lesions and in particular that χ changes in FCDIIb lesions were consistent with reduced iron, co-localised with low myelin and increased calcium and zinc content. These findings suggest that measurements of cortical χ could be used to characterise tissue properties non-invasively in epilepsy lesions.
Assuntos
Cálcio/metabolismo , Córtex Cerebral/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Ferro/metabolismo , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Zinco/metabolismo , Adolescente , Mapeamento Encefálico , Córtex Cerebral/metabolismo , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/metabolismo , Feminino , Substância Cinzenta/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/metabolismo , Estudos Retrospectivos , Adulto JovemRESUMO
AIMS: We understand little of the pathogenesis of developmental cortical lesions, because we understand little of the diversity of the cell types that contribute to the diseases or how those cells interact. We tested the hypothesis that cellular diversity and cell-cell interactions play an important role in these disorders by investigating the signalling molecules in the commonest cortical malformations that lead to childhood epilepsy, focal cortical dysplasia (FCD) and tuberous sclerosis (TS). METHODS: Transcriptional profiling clustered cases into molecularly distinct groups. Using gene expression data, we identified the secretory signalling molecules in FCD/TS and characterised the cell types expressing these molecules. We developed a functional model using organotypic cultures. RESULTS: We identified 113 up-regulated secretory molecules in FCDIIB/TS. The top 12 differentially expressed genes (DEGs) were validated by immunohistochemistry. This highlighted two molecules, Chitinase 3-like protein 1 (CHI3L1) and C-C motif chemokine ligand 2 (CCL2) (MCP1) that were expressed in a unique population of small cells in close proximity to balloon cells (BC). We then characterised these cells and developed a functional model in organotypic slice cultures. We found that the number of CHI3L1 and CCL2 expressing cells decreased following inhibition of mTOR, the main aberrant signalling pathway in TS and FCD. CONCLUSIONS: Our findings highlight previously uncharacterised small cell populations in FCD and TS which express specific signalling molecules. These findings indicate a new level of diversity and cellular interactions in cortical malformations and provide a generalisable approach to understanding cell-cell interactions and cellular heterogeneity in developmental neuropathology.
Assuntos
Encéfalo/metabolismo , Deficiências do Desenvolvimento/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Transdução de Sinais/fisiologia , Esclerose Tuberosa/metabolismo , Encéfalo/patologia , Deficiências do Desenvolvimento/patologia , Humanos , Imuno-Histoquímica , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologiaRESUMO
To efficiently remove nitrogen and phosphorus from secondary effluent with low values of COD/TN, a novel biological aerated filter (BAF) utilizing calcined pyrite with a large specific surface area (SSA) and pore diameter (PD) was designed to address this challenge. From the perspective of nutrients removal performance, and the corresponding effluent total nitrogen (TN) and PO43--P in the calcined pyrite autotrophic denitrification (CPAD) process decreased from 40.21 to 1.07 mg/L to 1.22 and 0.14 mg/L, respectively. Furthermore, the nutrients removal kinetics analysis showed that the CPAD and pyrite autotrophic denitrification (PAD) processes could be fitted with Half-order and Zero-order reactions via kinetics analysis, respectively, indicating that the TN removal performance of CPAD processes was better than that of the PAD process. Moreover, CPAD combined with sulfur autotrophic denitrification (SAD) processes was fitted by First-order reaction, and the TN removal performance was further enhanced over the CPAD process. From the perspective of microregulation, Fe2+ production in the PAD and CPAD processes could accelerate the electron transfer rate by increasing electron transport system activity (ETSA) and reducing electrochemical impedance spectroscopy (EIS). Moreover, Fe2+ stimulated microbes to produce more proteins (PN) and C10-HSL, which improved biofilm stability and interspecific communication processes. Notably, nitrifiers and autotrophic denitrifiers were simultaneously enriched via detection of high-throughput sequencing of 16 S rRNA genes, which verified the feasibility of simultaneous nitrification and autotrophic denitrification. Therefore, BAF with calcined pyrite and sulfur as composite fillers have a considerable advantage in nutrients removal.
Assuntos
Nitratos , Fósforo , Amônia , Biofilmes , Reatores Biológicos , Desnitrificação , Transporte de Elétrons , Elétrons , Ferro , Nitrogênio , Sulfetos , Eliminação de Resíduos Líquidos , Águas ResiduáriasRESUMO
BACKGROUND: Cryptococcus is one of the major fungal pathogens infecting the lungs. Pulmonary cryptococcal infection is generally considered a community-acquired condition caused by inhalation of dust contaminated with fungal cells from the environment. Here, we report a case developing pulmonary cryptococcosis 3 months after hospital admission, which has rarely been reported before. CASE PRESENTATION: A 73-year-old female patient who was previously immunocompetent experienced persistent dry cough for 2 weeks, 3 months after admission. Chest computed tomography (CT) showed a new solitary pulmonary nodule developed in the upper lobe of the left lung. Staining and culture of expectorated sputum smears were negative for bacteria, acid-fast bacilli, or fungus. The patient then underwent biopsy of the lesion. Histopathology findings and a positive serum cryptococcal antigen titer (1:8) indicated pulmonary cryptococcosis. Daily intravenous 400 mg fluconazole was administered initially followed by oral fluconazole therapy. Follow-up chest CT after 3 months of antifungal therapy showed complete disappearance of the pulmonary nodule. Respiratory symptoms of the patient also resolved. A complete investigation excluded the possibility of a patient-to-patient transmission or primarily acquiring the infection from the hospital environment. Based on the patient's history of exposure to pigeons before admission and recent steroid and azathioprine use after admission for the treatment of myasthenic crisis, reactivation of a latent pulmonary cryptococcal infection acquired before admission, in this case, is impressed. CONCLUSIONS: Although rarely reported, pulmonary cryptococcal infection should be included in the differential diagnosis of hospitalized patients with respiratory symptoms, especially in those with predisposing risk factors. Chest image studies and further surgical biopsy are needed for confirmation.
Assuntos
Azatioprina/efeitos adversos , Criptococose/diagnóstico , Pneumopatias Fúngicas/diagnóstico , Pulmão/patologia , Esteroides/efeitos adversos , Idoso , Antígenos de Fungos/sangue , Biópsia , Criptococose/etiologia , Criptococose/patologia , Diagnóstico Tardio , Diagnóstico Diferencial , Feminino , Humanos , Imunocompetência , Pneumopatias Fúngicas/etiologia , Pneumopatias Fúngicas/patologia , Tomografia Computadorizada por Raios XRESUMO
Bombyx mori was used to study the molecular mechanism of fluoride induced reproductive toxicity. In our previous study, we confirmed the physiological and biochemical effects of NaF on reproductive toxicity, and we found that the molecular mechanism of NaF induced reproductive damage may be associated with the oxidative phosphorylation pathway. To further study the function of NaF exposure on the oxidative phosphorylation pathway in the testis in Bombyx mori, and the relationship between oxidative phosphorylation and oxidative stress, we measured the changes in the main ROS (O2- and H2O2) in the testis, the activity of the main electron transport chain complex enzymes in the oxidative phosphorylation pathway and the transcription levels of the corresponding genes; we additionally performed pathological observations of the silkworm testis after exposure to 200 mg/L NaF solution for different times. The content of O2- and H2O in the silkworm gonads increased significantly at 24 h, 72 h and 120 h after NaF stress. The activity of mitochondrial complexes I, III, IV and V in the silkworm testis was significantly greater than that in the control group. RT-PCR analysis suggested that the mRNA transcription levels of NADH-CoQ1, Cyt c reductase, Cyt c oxidase and ATP synthase genes were up-regulated significantly. Histopathological investigation showed that the damage to the silkworm testis was more severe with increasing NaF exposure times. These results indicated that NaF stress affects the NADH respiratory chain of the mitochondrial electron transport chain and increases the activity of related enzyme complexes, thus destroying the balance of the electron transport chain. Subsequently, the content of ROS in cells significantly increases, thus resulting in oxidative stress reactions in cells. These results enable better understanding of the testis-damaging molecular toxicological mechanism of NaF.
RESUMO
Diosmin, a natural flavone glycoside acquired through dehydrogenation of the analogous flavanone glycoside hesperidin, is plentiful in many citrus fruits. Glioblastoma multiforme (GBM) is the most malignant primary brain tumor; the average survival time of GBM patients is less than 18 months after standard treatment. The present study demonstrated that diosmin, which is able to cross the blood-brain barrier, inhibited GBM cell growth in vitro and in vivo. Diosmin also impeded migration and invasion by GBM8401and LN229 GBM cells by suppressing epithelial-mesenchymal transition, as indicated by increased expression of E-cadherin and decreased expression of Snail and Twist. Diosmin also suppressed autophagic flux, as indicated by increased expression of LC3-II and p62, and induced cell cycle arrest at G1 phase. Importantly, diosmin did not exert serious cytotoxic effects toward control SVG-p12 astrocytes, though it did reduce astrocyte viability at high concentrations. These findings provide potentially helpful support to the development of new therapies for the treatment of GBM.
Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Diosmina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Diosmina/uso terapêutico , Feminino , Glioblastoma/fisiopatologia , Humanos , Camundongos Nus , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The pathogenesis and molecular mechanisms of ovarian low malignant potential (LMP) tumors or borderline ovarian tumors (BOTs) have not been fully elucidated to date. Surgery remains the cornerstone of treatment for this disease, and diagnosis is mainly made by histopathology to date. However, there is no integrated analysis investigating the tumorigenesis of BOTs with open experimental data. Therefore, we first utilized a functionome-based speculative model from the aggregated obtainable datasets to explore the expression profiling data among all BOTs and two major subtypes of BOTs, serous BOTs (SBOTs) and mucinous BOTs (MBOTs), by analyzing the functional regularity patterns and clustering the separate gene sets. We next prospected and assembled the association between these targeted biomolecular functions and their related genes. Our research found that BOTs can be accurately recognized by gene expression profiles by means of integrative polygenic analytics among all BOTs, SBOTs, and MBOTs; the results exhibited the top 41 common dysregulated biomolecular functions, which were sorted into four major categories: immune and inflammatory response-related functions, cell membrane- and transporter-related functions, cell cycle- and signaling-related functions, and cell metabolism-related functions, which were the key elements involved in its pathogenesis. In contrast to previous research, we identified 19 representative genes from the above classified categories (IL6, CCR2 for immune and inflammatory response-related functions; IFNG, ATP1B1, GAS6, and PSEN1 for cell membrane- and transporter-related functions; CTNNB1, GATA3, and IL1B for cell cycle- and signaling-related functions; and AKT1, SIRT1, IL4, PDGFB, MAPK3, SRC, TWIST1, TGFB1, ADIPOQ, and PPARGC1A for cell metabolism-related functions) that were relevant in the cause and development of BOTs. We also noticed that a dysfunctional pathway of galactose catabolism had taken place among all BOTs, SBOTs, and MBOTs from the analyzed gene set databases of canonical pathways. With the help of immunostaining, we verified significantly higher performance of interleukin 6 (IL6) and galactose-1-phosphate uridylyltransferase (GALT) among BOTs than the controls. In conclusion, a bioinformatic platform of gene-set integrative molecular functionomes and biophysiological pathways was constructed in this study to interpret the complicated pathogenic pathways of BOTs, and these important findings demonstrated the dysregulated immunological functionome and dysfunctional metabolic pathway as potential roles during the tumorigenesis of BOTs and may be helpful for the diagnosis and therapy of BOTs in the future.
Assuntos
Redes e Vias Metabólicas , Herança Multifatorial/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Inflamação/patologia , Interleucina-6/metabolismo , Aprendizado de Máquina , Neoplasias Ovarianas/genética , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transcriptoma , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismoRESUMO
Malignant brain tumors are responsible for catastrophic morbidity and mortality globally. Among them, glioblastoma multiforme (GBM) bears the worst prognosis. The GrpE-like 2 homolog (GRPEL2) plays a crucial role in regulating mitochondrial protein import and redox homeostasis. However, the role of GRPEL2 in human glioblastoma has yet to be clarified. In this study, we investigated the function of GRPEL2 in glioma. Based on bioinformatics analyses from the Cancer Gene Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we inferred that GRPEL2 expression positively correlates with WHO tumor grade (p < 0.001), IDH mutation status (p < 0.001), oligodendroglial differentiation (p < 0.001), and overall survival (p < 0.001) in glioma datasets. Functional validation in LN229 and GBM8401 GBM cells showed that GRPEL2 knockdown efficiently inhibited cellular proliferation. Moreover, GRPEL2 suppression induced cell cycle arrest at the sub-G1 phase. Furthermore, GRPEL2 silencing decreased intracellular reactive oxygen species (ROS) without impending mitochondria membrane potential. The cellular oxidative respiration measured with a Seahorse XFp analyzer exhibited a reduction of the oxygen consumption rate (OCR) in GBM cells by siGRPEL2, which subsequently enhanced autophagy and senescence in glioblastoma cells. Taken together, GRPEL2 is a novel redox regulator of mitochondria bioenergetics and a potential target for treating GBM in the future.
Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Estudos de Casos e Controles , Ciclo Celular , Proliferação de Células , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Prognóstico , Transporte Proteico , Taxa de Sobrevida , Células Tumorais CultivadasRESUMO
BACKGROUND: Orbital metastasis from ampullary carcinoma is rare, with no previously reported cases. CASE PRESENTATION: We report the case of a 60-year-old man who complained of a right-sided headache, blurred vision, progressive proptosis, ptosis, and right eye pain for 3 months. His past medical history included an ampullary adenocarcinoma stage IIIA treated via the Whipple procedure and adjuvant chemoradiotherapy 1 year ago. However, he was lost to follow-up. Computed tomography of the orbit showed a soft tissue lesion in the right orbital fossa measuring 3.3 × 2 × 2 cm. An orbital mass biopsy demonstrated an intestinal-type adenocarcinoma that tested positive for cytokeratins 7 and 20 and CDX2 on immunohistochemical staining. The pathologic diagnosis was metastatic adenocarcinoma from the ampulla of Vater. Despite oncological treatment, the patient's illness progressed. He received palliative treatment and died 1 month later. CONCLUSIONS: We presented a rare case of orbital metastasis from ampullary adenocarcinoma. This should be considered in the differential diagnosis of patients with a history of ampullary adenocarcinoma who present with symptoms referring to the relevant locations.
Assuntos
Adenocarcinoma/secundário , Ampola Hepatopancreática/patologia , Neoplasias do Ducto Colédoco/patologia , Neoplasias Orbitárias/secundário , Neoplasias Pancreáticas , Adenocarcinoma/diagnóstico por imagem , Ampola Hepatopancreática/diagnóstico por imagem , Neoplasias do Ducto Colédoco/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , PancreaticoduodenectomiaRESUMO
Despite advances in the diagnosis and treatment of the central nervous system malignancy glioma, overall survival remains poor. Cytoskeleton-associated protein 2-like (CKAP2L), which plays key roles in neural progenitor cell division, has also been linked to poor prognosis in lung cancer. In the present study, we investigated the role of CKAP2L in glioma. From bioinformatics analyses of datasets from The Cancer Gene Atlas and the Chinese Glioma Genome Atlas, we found that CKAP2L expression correlates with tumor grade and overall survival. Gene set enrichment analysis (GSEA) showed that MITOTIC_SPINDLE, G2M_CHECKPOINT, and E2F_TARGETS are crucially enriched phenotypes associated with high CKAP2L expression. Using U87MG, U118MG, and LNZ308 human glioma cells, we confirmed that CKAP2L knockdown with siCKAP2L inhibits glioma cell proliferation, migration, invasion, and epithelial-mesenchymal transition. Interestingly, CKAP2L knockdown also induced cell cycle arrest at G2/M phase, which is consistent with the GSEA finding. Finally, we observed that CKAP2L knockdown led to significant increases in miR-4496. Treating cells with exogenous miR-4496 mimicked the effect of CKAP2L knockdown, and the effects of CKAP2L knockdown could be suppressed by miR-4496 inhibition. These findings suggest that CKAP2L is a vital regulator of miR-4496 activity and that CKAP2L is a potentially useful prognostic marker in glioma.
Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células/genética , Proteínas do Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/mortalidade , Neoplasias do Sistema Nervoso Central/patologia , Proteínas do Citoesqueleto/genética , Bases de Dados Genéticas , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioma/genética , Glioma/metabolismo , Glioma/mortalidade , Glioma/patologia , Humanos , Imuno-Histoquímica , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica/genética , Prognóstico , Análise Serial de TecidosRESUMO
BACKGROUND: Erythropoietin (EPO) is a hypoxia-inducible stimulator of erythropoiesis. Besides its traditional application in anemia therapy, it offers an effective treatment in the cancer patients, especially those who receive chemotherapy. Several reports indicated that it could promote the tumor cell proliferation through its specific receptor (EPOR). Unfortunately, the role of EPO/EPOR in hepatocellular carcinoma (HCC) progressing is still uncertain. METHODS: Protein in tumor tissue from HCC patients or H22 tumor-bearing mice was detected with immunohistochemistry. Cells were cultured under 1% oxygen to establish hypoxia. RT-PCR and western blotting were used to measure mRNA and protein of EPO/EPOR, respectively. MTT, flow cytometry and PCNA staining were used to detect cell proliferation. Immunofluorescence staining was applied to study the expression and location of cellular EPOR. The EPOR binding studies were performed with 125I-EPO radiolabeling assay. RESULTS: EPO and EPOR protein were up-regulated in HCC tissue of patients and H22-bearing mice. These were positively correlated with hypoxia-inducible factor -1 α and ki-67. Hypoxia up-regulated the expression of EPO and EPOR in HepG2 cells. It also induced the proliferation and increased the percentage of divided cells after 24, 48 and 72 h treatment. These were inhibited in cells pre-treated with 0.5 µg/mL soluble-EPOR. Immunofluorescence staining presented that EPOR was obviously translocated from nucleus to cytoplasm and membrane under hypoxia. EPOR binding activity was also increased after exposure to hypoxia. Recombinant human erythropoietin obviously elevated cell proliferation rate and the percentage of divided under hypoxia but not normoxia, which were also inhibited by soluble-EPOR. CONCLUSIONS: Our result indicated for the first time that EPO promoted the proliferation of HCC cells through hypoxia induced translocation of it specific receptor. Trial registration TJC20141113, retrospectively registered.