Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 108(1): 40-54, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252236

RESUMO

Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.


Assuntos
Genoma de Planta/genética , Zea mays/genética , Produtos Agrícolas , Endosperma/genética , Endosperma/metabolismo , Endogamia , Mutação , Fenótipo , Melhoramento Vegetal , Banco de Sementes , Sementes/genética , Sementes/metabolismo , Amido/metabolismo , Zea mays/metabolismo
2.
Mol Breed ; 41(2): 9, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37309474

RESUMO

Leaf color mutant is an important resource for studying chlorophyll biosynthesis and chloroplast development in maize. Here, a novel mutant zebra crossband 9 (zb9) with transverse green-/yellow-striped leaves appeared from ten-leaf stage until senescence was identified from mutant population derived from the maize inbred line RP125. The yellow section of the zb9 mutant displays a reduction of chlorophyll and carotenoid contents, as well as impaired chloroplast structure. Genetic analysis showed that the zb9 mutant phenotype was caused by a single recessive gene. Map-based cloning demonstrated that the zb9 locus was delimited into a 648 kb region on chromosome 1 covering thirteen open reading frames (ORFs). Among them, a point mutation (G to A) in exon 2 of the gene Zm00001d029151, named Zmzb9, was identified based on sequencing analysis. The causal gene Zmzb9 encodes UDP-glucose-4-epimerase 4 (UGE4), a key enzyme involved in chloroplast development and was considered as the only candidate gene controlling the mutant phenotype. Expression patterns indicated that the causal gene was abundantly expressed in the leaves and sheaths, as well as significantly downregulated in the mutant compared to that in the wild type. Subcellular localization showed that ZmZB9 was localized in chloroplasts and implied the putative gene involved in chloroplast development. Taken together, we propose that the causal gene Zmzb9 tightly associated with the zebra leaf phenotype, and the obtained gene here will help to uncover the regulatory mechanism of pigment biosynthesis and chloroplast development in maize. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01202-7.

3.
Pharmacol Res ; 152: 104603, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31863867

RESUMO

Berberine (BBR), a naturally-occurring isoquinoline alkaloid isolated from several Chinese herbal medicines, has been widely used for the treatment of dysentery and colitis. However, its blood concentration was less than 1 %, and intestinal microflora-mediated metabolites of BBR were considered to be the important material basis for the bioactivities of BBR. Here, we investigated the anti-colitis activity and potential mechanism of oxyberberine (OBB), a novel gut microbiota metabolite of BBR, in DSS-induced colitis mice. Balb/C mice treated with 3 % DSS in drinking water to induce acute colitis were orally administrated with OBB once daily for 8 days. Clinical symptoms were analyzed, and biological samples were collected for microscopic, immune-inflammation, intestinal barrier function, and gut microbiota analysis. Results showed that OBB significantly attenuated DSS-induced clinical manifestations, colon shortening and histological injury in the mice with colitis, which achieved similar therapeutic effect to azathioprine (AZA) and was superior to BBR. Furthermore, OBB remarkably ameliorated colonic inflammatory response and intestinal epithelial barrier dysfunction. OBB appreciably inhibited TLR4-MyD88-NF-κB signaling pathway through down-regulating the protein expressions of TLR4 and MyD88, inhibiting the phosphorylation of IκBα, and the translocation of NF-κB p65 from cytoplasm to nucleus. Moreover, OBB markedly modulated the gut dysbiosis induced by DSS and restored the dysbacteria to normal level. Taken together, the result for the first time revealed that OBB effectively improved DSS-induced experimental colitis, at least partly through maintaining the colonic integrity, inhibiting inflammation response, and modulating gut microflora profile.


Assuntos
Anti-Inflamatórios/uso terapêutico , Berberina/análogos & derivados , Berberina/uso terapêutico , Colite/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Biotransformação , Ceco/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Masculino , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
4.
Int J Mol Sci ; 18(3)2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28245556

RESUMO

Bleomycin (BLM), a family of anti-tumor drugs, was reported to exhibit severe side effects limiting its usage in clinical treatment. Therefore, finding adjuvants that enhance the anti-tumor effect and reduce the detrimental effect of BLM is a prerequisite. Chrysanthemum indicum, an edible flower, possesses abundant bioactivities; the supercritical-carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE) have strong anti-inflammatory, anti-oxidant, and lung protective effects. However, the role of CISCFE combined with BLM treatment on tumor-bearing mice remains unclear. The present study aimed to investigate the potential synergistic effect and the underlying mechanism of CISCFE combined with BLM in the treatment of hepatoma 22 (H22) tumor-bearing mice. The results suggested that the oral administration of CISCFE combined with BLM could markedly prolong the life span, attenuate the BLM-induced pulmonary fibrosis, suppress the production of pro-inflammatory cytokines (interleukin-6), tumor necrosis factor-α, activities of myeloperoxidase, and malondiadehyde. Moreover, CISCFE combined with BLM promoted the ascites cell apoptosis, the activities of caspases 3 and 8, and up-regulated the protein expression of p53 and down-regulated the transforming growth factor-ß1 by activating the gene expression of miR-29b. Taken together, these results indicated that CISCFE could enhance the anti-cancer activity of BLM and reduce the BLM-induced pulmonary injury in H22 tumor-bearing mice, rendering it as a potential adjuvant drug with chemotherapy after further investigation in the future.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Chrysanthemum/química , Extratos Vegetais/farmacologia , Animais , Antibióticos Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Bleomicina/efeitos adversos , Dióxido de Carbono , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Citocinas/biossíntese , Modelos Animais de Doenças , Sinergismo Farmacológico , Fibrose , Extração Líquido-Líquido/métodos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Planta Med ; 82(4): 305-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26669678

RESUMO

Rhizoma Coptidis, Cortex Phellodendri, and berberine were reported to inhibit Helicobacter pylori. However, the underlying mechanism remained elusive. Urease plays a vital role in H. pylori colonization and virulence. In this work, aqueous extracts of Rhizoma Coptidis, Cortex Phellodendri of different origins, and purified berberine were investigated against H. pylori urease and jack bean urease to elucidate the inhibitory capacity, kinetics, and mechanism. Results showed that berberine was the major chemical component in Rhizoma Coptidis and Cortex Phellodendri, and the content of berberine in Rhizoma Coptidis was higher than in Cortex Phellodendri. The IC50 values of Rhizoma Coptidis were significantly lower than those Cortex Phellodendri and purified berberine, of which Coptis chinensis was shown to be the most active concentration- and time-dependent urease inhibitor. The Lineweaver-Burk plot analysis indicated that the inhibition pattern of C. chinensis against urease was noncompetitive for both H. pylori urease and jack bean urease. Thiol protectors (L-cysteine, glutathione, and dithiothreithol) significantly protected urease from the loss of enzymatic activity, while fluoride and boric acid showed weaker protection, indicating the active-site sulfhydryl group was possibly responsible for its inhibition. Furthermore, the urease inhibition proved to be reversible since C. chinensis-blocked urease could be reactivated by glutathione. The results suggested that the anti-urease activity of Rhizoma Coptidis was superior to that of Cortex Phellodendri and berberine, which was believed to be more likely to correlate to the content of total alkaloids rather than berberine monomer. The concentration- and time-dependent, reversible, and noncompetitive inhibition against urease by C. chinensis might be attributed to its interaction with the sulfhydryl group of the active site of urease.


Assuntos
Coptis/química , Medicamentos de Ervas Chinesas/farmacologia , Helicobacter pylori/efeitos dos fármacos , Phellodendron/química , Urease/antagonistas & inibidores , Berberina/farmacologia , Canavalia/enzimologia , China , Medicamentos de Ervas Chinesas/química , Helicobacter pylori/enzimologia
6.
Phytother Res ; 29(1): 67-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25243578

RESUMO

The aim of this study is to evaluate the antibacterial activity and urease inhibitory effects of patchouli alcohol (PA), the bioactive ingredient isolated from Pogostemonis Herba, which has been widely used for the treatment of gastrointestinal disorders. The activities of PA against selected bacteria and fungi were determined by agar dilution method. It was demonstrated that PA exhibited selective antibacterial activity against Helicobacter pylori, without influencing the major normal gastrointestinal bacteria. Noticeably, the antibacterial activity of PA was superior to that of amoxicillin, with minimal inhibition concentration value of 78 µg/mL. On the other hand, PA inhibited ureases from H.pylori and jack bean in concentration-dependent fashion with IC50 values of 2.67 ± 0.79 mM and 2.99 ± 0.41 mM, respectively. Lineweaver-Burk plots indicated that the type of inhibition was non-competitive against H.pylori urease whereas uncompetitive against jack bean urease. Reactivation of PA-inactivated urease assay showed DL-dithiothreitol, the thiol reagent, synergistically inactivated urease with PA instead of enzymatic activity recovery. In conclusion, the selective H.pylori antibacterial activity along with urease inhibitory potential of PA could make it a possible drug candidate for the treatment of H.pylori infection.


Assuntos
Antibacterianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Lamiaceae/química , Sesquiterpenos/farmacologia , Urease/antagonistas & inibidores , Amoxicilina/farmacologia , Helicobacter pylori/enzimologia , Testes de Sensibilidade Microbiana
7.
Mediators Inflamm ; 2014: 246407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25214712

RESUMO

The supercritical-carbon dioxide fluid extract of Chrysanthemum indicum Linné. (CFE) has been demonstrated to be effective in suppressing inflammation. The aim of this study is to investigate the preventive action and underlying mechanisms of CFE on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. ALI was induced by intratracheal instillation of LPS into lung, and dexamethasone was used as a positive control. Results revealed that pretreatment with CFE abated LPS-induced lung histopathologic changes, reduced the wet/dry ratio and proinflammatory cytokines productions (TNF-α, IL-1ß, and IL-6), inhibited inflammatory cells migrations and protein leakages, suppressed the levels of MPO and MDA, and upregulated the abilities of antioxidative enzymes (SOD, CAT, and GPx). Furthermore, the pretreatment with CFE downregulated the activations of NF-κB and the expressions of TLR4/MyD88. These results suggested that CFE exerted potential protective effects against LPS-induced ALI in mice and was a potential therapeutic drug for ALI. Its mechanisms were at least partially associated with the modulations of TLR4 signaling pathways.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Chrysanthemum/química , Lipopolissacarídeos/toxicidade , Extratos Vegetais/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Masculino , Camundongos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
8.
Phytochem Anal ; 25(2): 97-105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24605365

RESUMO

INTRODUCTION: Pogostone possesses potent anti-bacterial and anti-fungal activities and has been used for the quality control of essential oil of Pogostemon cablin. Pogostone is easily absorbed after oral administration but its metabolism in mammals remains elusive. OBJECTIVE: To investigate the metabolic profile of pogostone in vitro and in vivo. METHODS: High-performance liquid chromatography coupled with mass spectrometry (LC­MS) techniques were employed. Orbitrap MS and ion trap tandem mass spectrometry (MS/MS) were utilised to analyse the metabolism of pogostone by virtue of the high sensitivity and high selectivity in the measurement. In vitro experiment was carried out using rat liver microsomes while the in vivo study was conducted on rats, which were orally administered with pogostone (80 mg/kg). RESULTS: In total, three mono-hydroxylated, one di-hydroxylated, one mono-oxygenated, one di-oxygenated metabolite, one hydrolysis and one hydroxy conjugated metabolites were found. In addition hydroxylation was demonstrated to be a major metabolic pathway of pogostone. CONCLUSION: LC­MS was demonstrated to be a powerful tool for the metabolite identification of pogostone. The tentative identification of metabolites provides an insight for the metabolic clues of pogostone.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lamiaceae/química , Óleos Voláteis/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Hidroxilação , Masculino , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Óleos Voláteis/análise , Óleos Voláteis/química , Óleos Voláteis/farmacocinética , Oxirredução , Óleos de Plantas/química , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
9.
Int Immunopharmacol ; 138: 112634, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971107

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) is a severe metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by abnormal hepatic steatosis and inflammation. Previous studies have shown that Patchouli alcohol (PA), the primary component of Pogostemonis Herba, can alleviate digestive system diseases. However, its protection against MASH remains unclear. This study explored the protective effects and underlying mechanism of PA against high-fat diet-induced MASH in rats. Results showed that PA considerably reduced body weight, epididymal fat, and liver index and attenuated liver histological injury in MASH rats. PA alleviated hepatic injury by inhibiting steatosis and inflammation. These effects are associated with the improvement of SREBP-1c- and PPARα-mediated lipid metabolism and inhibition of the STING-signaling pathway-mediated inflammatory response. Moreover, PA-inhibited hepatic endoplasmic reticulum (ER) stress and mitochondrial dysfunction, reducing SREBP-1c and STING expressions and enhance PPARα expression. PA treatment had the strongest effect on the regulation of mitogen fusion protein 2 (Mfn2) in inhibiting mitochondrial dysfunction. Mfn2 is an important structural protein for binding ERs and mitochondria to form mitochondria-associated ER membranes (MAMs). MASH-mediated disruption of MAMs was inhibited after PA treatment-induced Mfn2 activation. Therefore, the pharmacological effect of PA on MASH is mainly attributed to the inhibition of MAM disruption-induced hepatic steatosis and inflammation. The findings of this study may have implications for MASH treatment that do not neglect the role of Mfn2-mediated MAMs.

10.
Eur J Pharmacol ; 968: 176433, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38369273

RESUMO

The promotion of excess low-density lipoprotein (LDL) clearance stands as an effective clinical approach for treating hyperlipidemia. Tetrahydroberberine, a metabolite of berberine, exhibits superior bioavailability compared to berberine and demonstrates a pronounced hypolipidemic effect. Despite these characteristics, the impact of tetrahydroberberine on improving excessive LDL clearance in hyperlipidemia has remained unexplored. Thus, this study investigates the potential effects of tetrahydroberberine on high-fat diet-induced hyperlipidemia in mice. The findings reveal that tetrahydroberberine exerts a more potent lipid-lowering effect than berberine, particularly concerning LDL-cholesterol in hyperlipidemic mice. Notably, tetrahydroberberine significantly reduces serum levels of upstream lipoproteins, including intermediate-density lipoprotein (IDL) and very low-density lipoprotein, by promoting their conversion to LDL. This reduction is further facilitated by the upregulation of hepatic LDL receptor expression induced by tetrahydroberberine. Intriguingly, tetrahydroberberine enhances the apolipoprotein E (ApoE)/apolipoprotein B100 (ApoB100) ratio, influencing lipoprotein assembly in the serum. This effect is achieved through the activation of the efflux of ApoE-containing cholesterol in the liver. The ApoE/ApoB100 ratio exhibits a robust negative correlation with serum levels of LDL and IDL, indicating its potential as a diagnostic indicator for hyperlipidemia. Moreover, tetrahydroberberine enhances hepatic lipid clearance without inducing lipid accumulation in the liver and alleviates existing liver lipid content. Importantly, no apparent hepatorenal toxicity is observed following tetrahydroberberine treatment for hyperlipidemia. In summary, tetrahydroberberine demonstrates a positive impact against hyperlipidemia by modulating lipoprotein assembly-induced clearance of LDL and IDL. The ApoE/ApoB100 ratio emerges as a promising diagnostic indicator for hyperlipidemia, showcasing the potential clinical significance of tetrahydroberberine in lipid management.


Assuntos
Berberina , Berberina/análogos & derivados , Hiperlipidemias , Camundongos , Animais , Lipoproteínas IDL/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Triglicerídeos , Colesterol/metabolismo , Apolipoproteínas E/genética , LDL-Colesterol , Fígado/metabolismo
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336103

RESUMO

Currently, it is acknowledged that gout is caused by uric acid (UA). However, some studies have revealed no correlation between gout and UA levels, and growing evidence suggests that 2,8-dihydroxyadenine (2,8-DHA), whose structural formula is similar to UA but is less soluble, may induce gout. Hence, we hypothesized that uroliths from hyperuricemia (HUA) patients, which is closely associated with gout, may contain 2,8-DHA. In this study, 2,8-DHA in uroliths and serum of HUA patients were determined using HPLC. Moreover, bioinformatics was used to investigate the pathogenic mechanisms of 2,8-DHA nephropathy. Subsequently, a mouse model of 2,8-DHA nephropathy established by the gavage administration of adenine, as well as a model of injured HK-2 cells induced by 2,8-DHA were used to explore the pathogenesis of 2,8-DHA nephropathy. Interestingly, 2,8-DHA could readily deposit in the cortex of the renal tubules, and was found in the majority of these HUA patients. Additionally, the differentially expressed genes between 2,8-DHA nephropathy mice and control mice were found to be involved in inflammatory reactions. Importantly, CCL2 and IL-1ß genes had the maximum degree, closeness, and betweenness centrality scores. The expressions of CCL2 and IL-1ß genes were significantly increased in the serum of 24 HUA patients with uroliths, indicating that they may be significant factors for 2,8-DHA nephropathy. Further analysis illustrated that oxidative damage and inflammation were the crucial processes of 2,8-DHA renal injury, and CCL2 and IL-1ß genes were verified to be essential biomarkers for 2,8-DHA nephropathy. These findings revealed further insights into 2,8-DHA nephropathy, and provided new ideas for its diagnosis and treatment.


Assuntos
Adenina/análogos & derivados , Gota , Hiperuricemia , Nefropatias , Humanos , Camundongos , Animais , Hiperuricemia/metabolismo , Rim/metabolismo , Ácido Úrico/metabolismo
12.
Biomed Chromatogr ; 27(9): 1092-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23505096

RESUMO

Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed-phase YMC-UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol-water (75:25, v/v) for 5 min at a flow rate of 400 µL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05-160 µg/mL (r = 0.9996). The intra- and inter-day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively.


Assuntos
Cromatografia Líquida/métodos , Óleos Voláteis/análise , Óleos Voláteis/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Antraquinonas/sangue , Análise Química do Sangue , Estabilidade de Medicamentos , Modelos Lineares , Óleos Voláteis/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
BMC Complement Altern Med ; 13: 119, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23721522

RESUMO

BACKGROUND: A traditional Chinese Medicine (TCM) formula, HZJW, has been applied in clinics in China for gastrointestinal disorders. However, the therapeutic mechanism underlying its efficacy and safety remained to be defined. The present investigation was undertaken to evaluate the formula HZJW for its gastroprotective potential, possible effect on Helicobacter pylori along with safety to justify its anti-ulcer action and safe clinical application. METHODS: The gastroduodenal cytoprotective potential was evaluated in rodent experimental models (HCl/Ethanol and NSAID-induced ulcer protocols). The anti-H. pylori property was assessed by agar dilution assay in vitro and analysis in vivo including rapid urease test, immunogold test and histopathology. For toxicity assessment, acute toxicity study was performed according to fixed dose procedure with a single oral administration of HZJW to mice. In the oral chronic toxicity, rats (80 males, 80 females) were administrated HZJW orally in 0, 1000, 2500, or 5000 mg/kg/day doses for 26 weeks (n = 40/group of each sex). Clinical signs, mortality, body weights, feed consumption, ophthalmology, hematology, serum biochemistry, gross findings, organ weights and histopathology were examined at the end of the 13- and 26-week dosing period, as well as after the 4-week recovery period. RESULTS: In the HCl/Ethanol-induced ulcer model, it was observed that oral administration with HZJW (260, 520 and 1040 mg/kg) and ranitidine (250 mg/kg) significantly reduced the ulcerative lesion index (116.70 ± 36.4, 102.20 ± 18.20, 84.10 ± 12.1 and 73.70 ± 16.70) in a dose-dependent manner, respectively, with respect to control group (134.10 ± 31.69). Significant inhibition was also observed in ulcerative index from aspirin-induced ulcer model, with decreases of 35.40 ± 5.93, 31.30 ± 8.08, 26.80 ± 8.27and 20.40 ± 6.93 for the groups treated with HZJW and ranitidine, in parallel to controls (41.60 ± 10.80). On the other hand, treatment with HZJW efficaciously eradicated H. pylori in infected mice in rapid urease test (RUT) and immunogold antibody assay, as further confirmed by reduction of H. pylori presence in histopathological analysis. In the in vitro assay, MICs for HZJW and amoxicillin (positive control) were 125 and 0.12 µg/mL respectively. The LD50 of HZJW was over 18.0 g/kg for mice. No drug-induced abnormalities were found as clinical signs, body weight, food consumption, hematology, blood biochemistry, ophthalmology and histopathology results across three doses. No target organ was identified. The No Observed Adverse Effect Level (NOAEL) of HZJW was determined to be 5,000 mg/kg/day for both sexes, a dose that was equivalent to 50 times of human dose. CONCLUSIONS: These results suggested the efficacy and safety of HZJW in healing peptic ulcer and combating H. pylori, which corroborated their conventional indications and contributed to their antiulcer pharmacological validation, lending more credence to its clinical application for the traditional treatment of stomach complaints symptomatic of peptic ulcer disease (PUD). HZJW might have the potential for further development as a safe and effective alternative/complementary to conventional medication in treating gastrointestinal (GI) disorders.


Assuntos
Antibacterianos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/efeitos dos fármacos , Úlcera Péptica/prevenção & controle , Administração Oral , Animais , Antibacterianos/efeitos adversos , Química Farmacêutica , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Úlcera Péptica/tratamento farmacológico , Úlcera Péptica/microbiologia , Ratos , Ratos Sprague-Dawley
14.
ScientificWorldJournal ; 2013: 434151, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385881

RESUMO

The aim of this study was to investigate the anti-inflammatory property of the ethanol extract of the root and rhizome of Pogostemon cablin (ERP). The anti-inflammatory effect was evaluated using four animal models including xylene-induced mouse ear edema, acetic acid-induced mouse vascular permeability, carrageenan-induced mouse pleurisy, and carrageenan-induced mouse hind paw edema. Results indicated that oral administration of ERP (120, 240, and 480 mg/kg) significantly attenuated xylene-induced ear edema, decreased acetic acid-induced capillary permeability, inhibited carrageenan-induced neutrophils recruitment, and reduced carrageenan-induced paw edema, in a dose-dependent manner. Histopathologically, ERP (480 mg/kg) abated inflammatory response of the edema paw. Preliminary mechanism studies demonstrated that ERP decreased the level of MPO and MDA, increased the activities of anti-oxidant enzymes (SOD, GPx, and GRd), attenuated the productions of TNF-α, IL-1ß, IL-6, PGE2 and NO, and suppressed the activities of COX-2 and iNOS. This work demonstrates that ERP has considerable anti-inflammatory potential, which provided experimental evidences for the traditional application of the root and rhizome of Pogostemon cablin in inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/química , Lamiaceae/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Rizoma/química , Ácido Acético , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Permeabilidade Capilar/efeitos dos fármacos , Carragenina , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Etanol , Malondialdeído/metabolismo , Camundongos , Ativação de Neutrófilo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Extratos Vegetais/administração & dosagem , Xilenos
15.
Int J Nanomedicine ; 18: 4101-4120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525694

RESUMO

Propose: Berberine (BBR) is extensively studied as an outstanding anti-hyperuricemia drug. However, the clinical application of BBR was limited due to its poor absorption and low bioavailability. Therefore, there is an urgent necessity to find a novel drug formulation to address the issues of BBR in clinical application. Methods: Herein, we conducted the solubility, characterization experiments to verify whether BBR and sodium taurocholate (STC) self-assembled nanoparticles (STC@BBR-SANPs) could form. Furthermore, we proceeded the release experiment in vitro and in vivo to investigate the drug release effect. Finally, we explored the therapeutic effect of STC@BBR-SANPs on hyperuricemia (HUA) through morphological observation of organs and measurement of related indicators. Results: The solubility, particle size, scanning electron microscopy (SEM), and stability studies showed that the stable STC@BBR-SANPs could be formed in the BBR-STC system at ratio of 1:4. Meanwhile, the tissue distribution experiments revealed that the STC@BBR-SANPs could accelerate the absorption and distribution of BBR. In addition, the pharmacology study demonstrated that both BBR and STC@BBR-SANPs exhibited favorable anti-HUA effects and nephroprotective effects, while STC@BBR-SANPs showed better therapeutic action than that of BBR. Conclusion: This work indicated that STC@BBR-SANPs can be self-assembly formed, and exerts excellent uric acid-lowering effect. STC@BBR-SANPs can help to solve the problems of poor solubility and low absorption rate of BBR in clinical use, and provide a new perspective for the future development of BBR.


Assuntos
Berberina , Nanopartículas , Berberina/farmacologia , Ácido Taurocólico , Liberação Controlada de Fármacos , Solubilidade
16.
Phytomedicine ; 108: 154521, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334387

RESUMO

BACKGROUND: Berberrubine (BRB), one of the major metabolites of berberine (BBR), exerts an anti-hyperuricemic effect even superior to BBR. Liver is an important location for drug transformation. Nevertheless, there are few studies on the bioactivities and metabolites of BRB. PURPOSE: We investigated whether oxyberberrubine (OBR), a liver metabolite of BRB, exerted urate-lowering and reno-protective effects in hyperuricemic mice. METHODS: Liver microsomes were used to incubate BRB for studying its biotransformation. We isolated and identified its new metabolite OBR, and investigated its anti-hyperuricemic and reno-protective effects. In this work, the hyperuricemic mice model was established by receiving potassium oxonate (PO) and hypoxanthine (HX) for 7 consecutive days. 1 h after modeling, different dosages of OBR (5, 10 and 20 mg/kg), BRB (20 mg/kg) or febuxostat (Fex, 5 mg/kg) were given mice by gavage. RESULTS: Results showed that OBR possessed potent anti-hyperuricemic and reno-protective effects in hyperuricemic mice. Serum uric acid (UA) level was lowered, and the activities of xanthine oxidase (XOD) as well as adenosine deaminase (ADA) in the liver were suppressed after treatment with OBR. Hepatic expressions of XOD were remarkably decreased at mRNA and protein levels by OBR treatment. In addition, OBR prominently alleviated renal injury, embodied in markedly reduced serum creatinine and blood urea nitrogen (BUN) levels, decreased inflammatory mediators (TNF-α, IL-1ß, IL-6 and IL-18) levels, mRNA expression of CYP27B1 and repairment of renal tissues damage. Besides, OBR down-regulated renal expression of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), NOD-like receptor 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), and caspase-1 at mRNA and protein levels. CONCLUSIONS: In short, our study indicated that OBR possessed superior anti-hyperuricemic and reno-protective effects, at least in part, through the inhibition of XOD, URAT1, GLUT9 and NLRP3 inflammasome signaling pathway in the kidney.


Assuntos
Berberina , Hiperuricemia , Camundongos , Animais , Ácido Úrico , Berberina/farmacologia , Berberina/uso terapêutico , Microssomos Hepáticos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Xantina Oxidase/metabolismo , Rim , Ácido Oxônico , RNA Mensageiro/metabolismo
17.
Food Funct ; 14(6): 2822-2835, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36866793

RESUMO

As the final hydrogenated metabolite of curcumin, octahydrocurcumin (OHC) exhibits increased powerful bioactivities. The chiral and symmetric chemical structure indicated that there were two OHC stereoisomers, (3R,5S)-octahydrocurcumin (Meso-OHC) and (3S,5S)-octahydrocurcumin ((3S,5S)-OHC), which may induce different effects on metabolic enzymes and bioactivities. Thus, we detected OHC stereoisomers from rat metabolites (blood, liver, urine and feces) after oral administration of curcumin. In addition, OHC stereoisomers were prepared and then their different influences on cytochrome P450 enzymes (CYPs) and UDP-glucuronyltransferases (UGTs) in L-02 cells were tested to explore the potential interaction and different bioactivities. Our results proved that curcumin could be metabolised into OHC stereoisomers first. In addition, Meso-OHC and (3S,5S)-OHC exhibited slight induction or inhibition effects on CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP3A4 and UGTs. Furthermore, Meso-OHC exhibited more intensive inhibition toward CYP2E1 expression than (3S,5S)-OHC, ascribed to the different mode of binding to the enzyme protein (P < 0.05), which finally induced more effective liver protection effects in acetaminophen-induced L-02 cell injury.


Assuntos
Curcumina , Citocromo P-450 CYP2E1 , Ratos , Animais , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Curcumina/química , Estereoisomerismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo
18.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2405-2416, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37193772

RESUMO

Hyperuricemia (HUA) is a common chronic metabolic disease that can cause renal failure and even death in severe cases. Berberine (BBR) is an isoquinoline alkaloid derived from Phellodendri Cortex with strong antioxidant, anti-inflammatory, and anti-apoptotic properties. The purpose of this study was to investigate the protective effects of berberine (BBR) against uric acid (UA)-induced HK-2 cells and unravel their regulatory potential mechanisms. The CCK8 assay was carried out to detect cell viability. The expression levels of inflammatory factors interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) and Lactate dehydrogenase (LDH) were measured using Enzyme-linked immunosorbent assays (ELISA). The expression of the apoptosis-related protein (cleaved-Caspase3, cleaved-Caspase9, BAX, BCL-2) was detected by western blot. The effects of BBR on the activities of the NOD-like receptor family pyrin domain containing 3 (NLRP3) and the expression of the downstream genes were determined by RT-PCR and western blot in HK-2 cells. From the data, BBR significantly reversed the up-regulation of inflammatory factors (IL-1ß, IL-18) and LDH. Furthermore, BBR down-regulated protein expression of pro-apoptotic proteins BAX, cleaved caspase3 (cl-Caspase3), cleaved caspase9 (cl-Caspase9), and enhanced the expression of antiapoptotic protein BCL-2. Simultaneously, BBR inhibited the activated NLPR3 and reduced the mRNA levels of NLRP3, Caspase1, IL-18, and IL-1ß. Also, BBR attenuated the expression of NLRP3 pathway-related proteins (NLRP3, ASC, Caspase1, cleaved-Caspase1, IL-18, IL-1ß, and GSDMD). Furthermore, specific NLRP3-siRNA efficiently blocked UA-induced the level of inflammatory factors (IL-1ß, IL-18) and LDH and further inhibited activated NLRP3 pathway. Collectively, our results suggested that BBR can alleviate cell injury induced by UA. The underlying unctionary mechanism may be through the NLRP3 signaling pathway.


Assuntos
Berberina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/farmacologia , Ácido Úrico/metabolismo , Inflamassomos/genética , Berberina/farmacologia , Proteína X Associada a bcl-2 , Transdução de Sinais
19.
J Sep Sci ; 35(17): 2193-202, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22888096

RESUMO

A simple and sensitive method was developed and validated for profiling and simultaneous quantitation of seven alkaloids (6-hydroxy-ß-carboline-1-carboxylic acid, ß-carboline-1-carboxylic acid, ß-carboline-1-propanoic acid, 3-methylcanthin-5,6-dione, 5-hydroxy-4-methoxycanthin-6-one, 1-methoxycarbony-ß-carboline, and 4,5-dimethoxycanthin-6-one) in Picrasma quassioide grown in different locations by high-performance liquid chromatography with photodiode array detection. The analysis was conducted on a Phenomenex Gemini C(18) column at 35°C with mobile phase of 25 mM aqueous ammonium acetate (pH 4.0, adjusted by glacial acetate acid) and acetonitrile. A common fingerprint chromatograph under 254 nm consisting of 27 peaks was constructed for the evaluation of the similarities among 31 P. quassioide samples. Samples from Guangdong and Guangxi Provinces were found to be within group linkage and showed significant difference from that of Jiangxi Province origin by using principal component analysis and hierarchical clustering analysis. In addition, the seven alkaloids were identified by electrospray ionization mass spectrometry and comparing with reference standards and literature data. All of them were determined simultaneously using the established HPLC method. This rapid and effective analytical method could be employed for quality assessment of P. quassioide, as well as pharmaceutical products containing this herbal material.


Assuntos
Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Picrasma/química , China , Cromatografia Líquida de Alta Pressão/instrumentação , Medicamentos de Ervas Chinesas/normas , Controle de Qualidade
20.
Phytomedicine ; 101: 154135, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35509133

RESUMO

BACKGROUND: Oxyberberine (OBB), an important in vivo metabolite of berberine, exerts superior hypoglycemia effect. However, the underlying mechanism remains obscure. Heme oxygenase-1 (HO-1) holds a crucial status in the pathogenesis of diabetes. Previous research has indicated that OBB can specifically bind to hemoglobin and significantly up-regulated the HO-1 expression in diabetic rat. Based on cellular protection features of HO-1, this work aimed to probe the anti-diabetic effect of OBB and the association with the potential induction of HO-1 expression. METHODS: A type 2 diabetic mellitus rat model was established. Glucolipid metabolism and insulin sensitivity were analyzed. Immunohistochemistry, Western blotting and in silico simulations were also performed. RESULTS: Administration of OBB or HO-1 inducer hemin significantly reduced fasting blood glucose level, blood fat, and inflammatory cytokine levels, while increased antioxidant capacity of pancreas. Meanwhile, OBB treatment remarkably stimulated liver glycogenesis and inhibited gluconeogenesis. Besides, OBB improved the glucose utilizing of muscle. Noteworthily, OBB inhibited the islet cell apoptosis and improved pancreatic function. In addition, OBB effectively improved the consumption of glucose in insulin-resistant HepG2 cells. Moreover, OBB also reduced oxidative stress, promoted glucose-elicited insulin secretion and enhanced expression of ß-cell function proteins in INS-1 cells. Nevertheless, these effects were significantly reversed by treatment with Zincprotoporphrin (ZnPP). Additionally, in silico simulations indicated that OBB exhibited superior affinity with HO-1. CONCLUSION: OBB effectively ameliorated hyperglycemia, dyslipidemia, and insulin resistance, improved oral glucose tolerance, and maintained glucose metabolism homeostasis, at least in part, by promoting HO-1-mediated activation of phosphoinositide 3-kinase / protein kinase B (PI3K/Akt) and AMP-activated protein kinase (AMPK) pathways. These data eloquently suggest that OBB, as a novel HO-1 agonist, has good potential to be a promising candidate drug for the management of diabetes, and support a therapeutic role of HO-1 induction in diabetes that potentially paves the way to translational research.


Assuntos
Diabetes Mellitus , Hipoglicemia , Resistência à Insulina , Animais , Diabetes Mellitus/tratamento farmacológico , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Resistência à Insulina/fisiologia , Fosfatidilinositol 3-Quinases , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA