Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 2): 129054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159708

RESUMO

Hydrogel-based flexible wearable sensors have garnered significant attention in recent years. However, the use of hydrogel, a biomaterial known for its high toughness, environmental friendliness, and frost resistance, poses a considerable challenge. In this study, we propose a stepwise construction and multiple non-covalent interaction matching strategy to successfully prepare dynamically physically crosslinked multifunctional conductive hydrogels. These hydrogels self-assembled to form a rigid crosslinked network through intermolecular hydrogen bonding and metal ion coordination chelation. Furthermore, the freeze-thawing process promoted the formation of poly(vinyl alcohol) microcrystalline domains within the amorphous hydrogel network system, resulting in exceptional mechanical properties, including a tensile strength (2.09 ± 0.01 MPa) and elongation at break of 562 ± 12 %. It can lift 10,000 times its own weight. Additionally, these hydrogels exhibit excellent resistance to swelling and maintain good toughness even at temperatures as low as -60 °C. As a wearable strain sensor with remarkable sensing ability (GF = 1.46), it can be effectively utilized in water and underwater environments. Moreover, it demonstrates excellent antimicrobial properties against Escherichia coli (Gram-negative bacteria). Leveraging its impressive sensing ability, we combine signal recognition with a deep learning model by incorporating Morse code for encryption and decryption, enabling information transmission.


Assuntos
Quitosana , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Escherichia coli , Hidrogéis , Álcool de Polivinil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA