Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38928304

RESUMO

Hydrogen sulfide (H2S) is a novel gasotransmitter. Sucrose (SUC) is a source of cellular energy and a signaling molecule. Maize is the third most common food crop worldwide. However, the interaction of H2S and SUC in maize thermotolerance is not widely known. In this study, using maize seedlings as materials, the metabolic and functional interactions of H2S and SUC in maize thermotolerance were investigated. The data show that under heat stress, the survival rate and tissue viability were increased by exogenous SUC, while the malondialdehyde content and electrolyte leakage were reduced by SUC, indicating SUC could increase maize thermotolerance. Also, SUC-promoted thermotolerance was enhanced by H2S, while separately weakened by an inhibitor (propargylglycine) and a scavenger (hypotaurine) of H2S and a SUC-transport inhibitor (N-ethylmaleimide), suggesting the interaction of H2S and SUC in the development of maize thermotolerance. To establish the underlying mechanism of H2S-SUC interaction-promoted thermotolerance, redox parameters in mesocotyls of maize seedlings were measured before and after heat stress. The data indicate that the activity and gene expression of H2S-metabolizing enzymes were up-regulated by SUC, whereas H2S had no significant effect on the activity and gene expression of SUC-metabolizing enzymes. In addition, the activity and gene expression of catalase, glutathione reductase, ascorbate peroxidase, peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and superoxide dismutase were reinforced by H2S, SUC, and their combination under non-heat and heat conditions to varying degrees. Similarly, the content of ascorbic acid, flavone, carotenoid, and polyphenol was increased by H2S, SUC, and their combination, whereas the production of superoxide radicals and the hydrogen peroxide level were impaired by these treatments to different extents. These results imply that the metabolic and functional interactions of H2S and sucrose signaling exist in the formation of maize thermotolerance through redox homeodynamics. This finding lays the theoretical basis for developing climate-resistant maize crops and improving food security.


Assuntos
Sulfeto de Hidrogênio , Oxirredução , Sacarose , Termotolerância , Zea mays , Zea mays/metabolismo , Zea mays/fisiologia , Zea mays/genética , Zea mays/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Plântula/metabolismo , Plântula/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569644

RESUMO

Hydrogen sulfide (H2S) and abscisic acid (ABA), as a signaling molecule and stress hormone, their crosstalk-induced thermotolerance in maize seedlings and its underlying mechanism were elusive. In this paper, H2S and ABA crosstalk as well as the underlying mechanism of crosstalk-induced thermotolerance in maize seedlings were investigated. The data show that endogenous levels of H2S and ABA in maize seedlings could be mutually induced by regulating their metabolic enzyme activity and gene expression under non-heat stress (non-HS) and HS conditions. Furthermore, H2S and ABA alone or in combination significantly increase thermotolerance in maize seedlings by improving the survival rate (SR) and mitigating biomembrane damage. Similarly, the activity of the reactive oxygen species (ROS)-scavenging system, including enzymatic antioxidants catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and superoxide dismutase (SOD), as well as the non-enzymatic antioxidants reduced ascorbic acid (AsA), carotenoids (CAR), flavone (FLA), and total phenols (TP), was enhanced by H2S and ABA alone or in combination in maize seedlings. Conversely, the ROS level (mainly hydrogen peroxide and superoxide radical) was weakened by H2S and ABA alone or in combination in maize seedlings under non-HS and HS conditions. These data imply that the ROS-scavenging system played an essential role in H2S-ABA crosstalk-induced thermotolerance in maize seedlings.


Assuntos
Antioxidantes , Termotolerância , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zea mays/metabolismo , Superóxido Dismutase/metabolismo , Ácido Abscísico/metabolismo , Plântula/metabolismo , Glutationa/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834504

RESUMO

Transgenic expression of Cre recombinase driven by a specific promoter is normally used to conditionally knockout a gene in a tissue- or cell-type-specific manner. In αMHC-Cre transgenic mouse model, expression of Cre recombinase is controlled by the myocardial-specific α-myosin heavy chain (αMHC) promoter, which is commonly used to edit myocardial-specific genes. Toxic effects of Cre expression have been reported, including intro-chromosome rearrangements, micronuclei formation and other forms of DNA damage, and cardiomyopathy was observed in cardiac-specific Cre transgenic mice. However, mechanisms associated with Cardiotoxicity of Cre remain poorly understood. In our study, our data unveiled that αMHC-Cre mice developed arrhythmias and died after six months progressively, and none of them survived more than one year. Histopathological examination showed that αMHC-Cre mice had aberrant proliferation of tumor-like tissue in the atrial chamber extended from and vacuolation of ventricular myocytes. Furthermore, the αMHC-Cre mice developed severe cardiac interstitial and perivascular fibrosis, accompanied by significant increase of expression levels of MMP-2 and MMP-9 in the cardiac atrium and ventricular. Moreover, cardiac-specific expression of Cre led to disintegration of the intercalated disc, along with altered proteins expression of the disc and calcium-handling abnormality. Comprehensively, we identified that the ferroptosis signaling pathway is involved in heart failure caused by cardiac-specific expression of Cre, on which oxidative stress results in cytoplasmic vacuole accumulation of lipid peroxidation on the myocardial cell membrane. Taken together, these results revealed that cardiac-specific expression of Cre recombinase can lead to atrial mesenchymal tumor-like growth in the mice, which causes cardiac dysfunction, including cardiac fibrosis, reduction of the intercalated disc and cardiomyocytes ferroptosis at the age older than six months in mice. Our study suggests that αMHC-Cre mouse models are effective in young mice, but not in old mice. Researchers need to be particularly careful when using αMHC-Cre mouse model to interpret those phenotypic impacts of gene responses. As the Cre-associated cardiac pathology matched mostly to that of the patients, the model could also be employed for investigating age-related cardiac dysfunction.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Ferroptose , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Fibrilação Atrial/metabolismo , Cardiomiopatias/metabolismo , Camundongos Transgênicos , Fibrose , Camundongos Knockout
4.
J Cell Mol Med ; 26(7): 1886-1895, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35199443

RESUMO

Nitrogen mustard (NM) is an alkylating vesicant that causes severe pulmonary injury. Currently, there are no effective means to counteract vesicant-induced lung injury. MG53 is a vital component of cell membrane repair and lung protection. Here, we show that mice with ablation of MG53 are more susceptible to NM-induced lung injury than the wild-type mice. Treatment of wild-type mice with exogenous recombinant human MG53 (rhMG53) protein ameliorates NM-induced lung injury by restoring arterial blood oxygen level, by improving dynamic lung compliance and by reducing airway resistance. Exposure of lung epithelial and endothelial cells to NM leads to intracellular oxidative stress that compromises the intrinsic cell membrane repair function of MG53. Exogenous rhMG53 protein applied to the culture medium protects lung epithelial and endothelial cells from NM-induced membrane injury and oxidative stress, and enhances survival of the cells. Additionally, we show that loss of MG53 leads to increased vulnerability of macrophages to vesicant-induced cell death. Overall, these findings support the therapeutic potential of rhMG53 to counteract vesicant-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Mecloretamina , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Animais , Células Endoteliais/metabolismo , Pulmão/metabolismo , Mecloretamina/uso terapêutico , Mecloretamina/toxicidade , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Recombinantes/metabolismo
5.
Kidney Int ; 101(1): 119-130, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757120

RESUMO

Kidney fibrosis is associated with the progression of acute kidney injury to chronic kidney disease. MG53, a cell membrane repair protein, has been shown to protect against injury to kidney epithelial cells and acute kidney injury. Here, we evaluated the role of MG53 in modulation of kidney fibrosis in aging mice and in mice with unilateral ureteral obstruction (UUO) a known model of progressive kidney fibrosis. Mice with ablation of MG53 developed more interstitial fibrosis with age than MG53-intact mice of the same age. Similarly, in the absence of MG53, kidney fibrosis was exaggerated compared to mice with intact MG53 in the obstructed kidney compared to the contralateral unobstructed kidney or the kidneys of sham operated mice. The ureteral obstructed kidneys from MG53 deficient mice also showed significantly more inflammation than ureteral obstructed kidneys from MG53 intact mice. In vitro experiments demonstrated that MG53 could enter the nuclei of proximal tubular epithelial cells and directly interact with the p65 component of transcription factor NF-κB, providing a possible explanation of enhanced inflammation in the absence of MG53. To test this, enhanced MG53 expression through engineered cells or direct recombinant protein delivery was given to mice subject to UUO. This reduced NF-κB activation and inflammation and attenuated kidney fibrosis. Thus, MG53 may have a therapeutic role in treating chronic kidney inflammation and thereby provide protection against fibrosis that leads to the chronic kidney disease phenotype.


Assuntos
Injúria Renal Aguda , Obstrução Ureteral , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Animais , Membrana Celular/metabolismo , Fibrose , Rim/patologia , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Obstrução Ureteral/metabolismo
6.
J Hepatol ; 76(3): 558-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34736969

RESUMO

BACKGROUND & AIMS: Drug-induced liver injury (DILI) remains challenging to treat and is still a leading cause of acute liver failure. MG53 is a muscle-derived tissue-repair protein that circulates in the bloodstream and whose physiological role in protection against DILI has not been examined. METHODS: Recombinant MG53 protein (rhMG53) was administered exogenously, using mice with deletion of Mg53 or Ripk3. Live-cell imaging, histological, biochemical, and molecular studies were used to investigate the mechanisms that underlie the extracellular and intracellular action of rhMG53 in hepatoprotection. RESULTS: Systemic administration of rhMG53 protein, in mice, can prophylactically and therapeutically treat DILI induced through exposure to acetaminophen, tetracycline, concanavalin A, carbon tetrachloride, or thioacetamide. Circulating MG53 protects hepatocytes from injury through direct interaction with MLKL at the plasma membrane. Extracellular MG53 can enter hepatocytes and act as an E3-ligase to mitigate RIPK3-mediated MLKL phosphorylation and membrane translocation. CONCLUSIONS: Our data show that the membrane-delimited signaling and cytosolic dual action of MG53 effectively preserves hepatocyte integrity during DILI. rhMG53 may be a potential treatment option for patients with DILI. LAY SUMMARY: Interventions to treat drug-induced liver injury and halt its progression into liver failure are of great value to society. The present study reveals that muscle-liver cross talk, with MG53 as a messenger, serves an important role in liver cell protection. Thus, MG53 is a potential treatment option for patients with drug-induced liver injury.


Assuntos
Hepatócitos/citologia , Proteínas de Membrana/metabolismo , Substâncias Protetoras/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas , Citosol/metabolismo , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Proteínas de Membrana/análise , Proteínas de Membrana/sangue , Camundongos , Fatores de Proteção
7.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361587

RESUMO

Liver hepatocellular carcinoma (LIHC) remains a global health challenge with poor prognosis and high mortality. FKBP1A was first discovered as a receptor for the immunosuppressant drug FK506 in immune cells and is critical for various tumors and cancers. However, the relationships between FKBP1A expression, cellular distribution, tumor immunity, and prognosis in LIHC remain unclear. Here, we investigated the expression level of FKBP1A and its prognostic value in LIHC via multiple datasets including ONCOMINE, TIMER, GEPIA, UALCAN, HCCDB, Kaplan-Meier plotter, LinkedOmics, and STRING. Human liver tissue microarray was employed to analyze the characteristics of FKBP1A protein including the expression level and pathological alteration in cellular distribution. FKBP1A expression was significantly higher in LIHC and correlated with tumor stage, grade and metastasis. The expression level of the FKBP1A protein was also increased in LIHC patients along with its accumulation in endoplasmic reticulum (ER). High FKBP1A expression was correlated with a poor survival rate in LIHC patients. The analysis of gene co-expression and the regulatory pathway network suggested that FKBP1A is mainly involved in protein synthesis, metabolism and the immune-related pathway. FKBP1A expression had a significantly positive association with the infiltration of hematopoietic immune cells including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Moreover, M2 macrophage infiltration was especially associated with a poor survival prognosis in LIHC. Furthermore, FKBP1A expression was significantly positively correlated with the expression of markers of M2 macrophages and immune checkpoint proteins such as PD-L1, CTLA-4, LAG3 and HAVCR2. Our study demonstrated that FKBP1A could be a potential prognostic target involved in tumor immune cell infiltration in LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Prognóstico , Neoplasias Hepáticas/patologia , Linfócitos T CD8-Positivos/patologia , Biomarcadores Tumorais , Perfilação da Expressão Gênica , Proteínas de Ligação a Tacrolimo/genética
8.
Mol Cancer ; 20(1): 118, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521423

RESUMO

BACKGROUND: Cancer cells develop resistance to chemotherapeutic intervention by excessive formation of stress granules (SGs), which are modulated by an oncogenic protein G3BP2. Selective control of G3BP2/SG signaling is a potential means to treat non-small cell lung cancer (NSCLC). METHODS: Co-immunoprecipitation was conducted to identify the interaction of MG53 and G3BP2. Immunohistochemistry and live cell imaging were performed to visualize the subcellular expression or co-localization. We used shRNA to knock-down the expression MG53 or G3BP2 to test the cell migration and colony formation. The expression level of MG53 and G3BP2 in human NSCLC tissues was tested by western blot analysis. The ATO-induced oxidative stress model was used to examine the effect of rhMG53 on SG formation. Moue NSCLC allograft experiments were performed on wild type and transgenic mice with either knockout of MG53, or overexpression of MG53. Human NSCLC xenograft model in mice was used to evaluate the effect of MG53 overexpression on tumorigenesis. RESULTS: We show that MG53, a member of the TRIM protein family (TRIM72), modulates G3BP2 activity to control lung cancer progression. Loss of MG53 results in the progressive development of lung cancer in mg53-/- mice. Transgenic mice with sustained elevation of MG53 in the bloodstream demonstrate reduced tumor growth following allograft transplantation of mouse NSCLC cells. Biochemical assay reveals physical interaction between G3BP2 and MG53 through the TRIM domain of MG53. Knockdown of MG53 enhances proliferation and migration of NSCLC cells, whereas reduced tumorigenicity is seen in NSCLC cells with knockdown of G3BP2 expression. The recombinant human MG53 (rhMG53) protein can enter the NSCLC cells to induce nuclear translation of G3BP2 and block arsenic trioxide-induced SG formation. The anti-proliferative effect of rhMG53 on NSCLC cells was abolished with knockout of G3BP2. rhMG53 can enhance sensitivity of NSCLC cells to undergo cell death upon treatment with cisplatin. Tailored induction of MG53 expression in NSCLC cells suppresses lung cancer growth via reduced SG formation in a xenograft model. CONCLUSION: Overall, these findings support the notion that MG53 functions as a tumor suppressor by targeting G3BP2/SG activity in NSCLCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Grânulos de Estresse/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Grânulos de Estresse/patologia
9.
BMC Dev Biol ; 18(1): 7, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587629

RESUMO

BACKGROUND: FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases. MAIN BODY: This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways. CONCLUSION: This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.


Assuntos
Drosophila melanogaster/metabolismo , Mamíferos/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Sequência de Aminoácidos , Animais , Evolução Molecular , Humanos , Inseticidas/toxicidade , Filogenia
10.
Ecotoxicol Environ Saf ; 149: 101-107, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29154133

RESUMO

Methylglyoxal (MG) now is found to be an emerging signaling molecule. It can relieve the toxicity of cadmium (Cd), however its alleviating mechanism still remains unknown. In this study, compared with the Cd-stressed seedlings without MG treatment, MG treatment could stimulate the activities of glutathione reductase (GR) and gamma-glutamylcysteine synthetase (γ-ECS) in Cd-stressed wheat seedlings, which in turn induced an increase of reduced glutathione (GSH). Adversely, the activated enzymes related to GSH biosynthesis and increased GSH were weakened by N-acetyl-L-cysteine (NAC, MG scavenger), 2,4-dihydroxy-benzylamine (DHBA) and 1,3-bischloroethyl-nitrosourea (BCNU, both are specific inhibitors of GR), buthionine sulfoximine (BSO, a specific inhibitors of GSH biosynthesis), and N-ethylmaleimide (NEM, GSH scavenger), respectively. In addition, MG increased the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in Cd-treated seedlings, followed by declining an increase in endogenous MG as comparision to Cd-stressed seedlings alone. On the contrary, the increased glyoxalase activity and decreased endogenous MG level were reversed by NAC and specific inhibitors of Gly I (isoascorbate, IAS; squaric acid, SA). Furthermore, MG alleviated an increase in hydrogen peroxide (H2O2) and malondialdehyde (MDA) in Cd-treated wheat seedlings. These results indicated that MG could alleviate Cd toxicity and improve the growth of Cd-stressed wheat seedlings by a coordinated induction of glutathione pool and glyoxalase system.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Glutationa/metabolismo , Lactoilglutationa Liase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Triticum/efeitos dos fármacos , Antioxidantes/farmacologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
11.
Plant Cell Rep ; 36(2): 367-370, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27838814

RESUMO

KEY MESSAGE: Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L) by improving plant growth. For a long time, the reactive α, ß-carbonyl ketoaldehyde methylglyoxal (CH3COCHO; MG) has been regarded as merely a toxic metabolite in plants, but, now, emerging as a signal molecule in plants. In this study, cadmium (Cd) stress decreased plant height, root length, fresh weight (FW), and dry weight (DW) in a concentration-dependent manner, indicating that Cd had toxic effects on the growth of wheat seedlings. The toxic effects of Cd were alleviated by exogenously applied MG in a dosage dependent fashion, and 700 mM MG reached significant differences, but this alleviating effect was eliminated by the treatment with N-acetyl-L-cysteine (NAC, MG scavenger), suggesting that MG could mitigate Cd toxicity in wheat. This study reported for the first time that MG could alleviate Cd toxicity in wheat, uncovering a new possible physiological function for MG, and opening a novel line of research in plant stress biology.


Assuntos
Cádmio/toxicidade , Aldeído Pirúvico/farmacologia , Triticum/fisiologia , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
13.
Front Plant Sci ; 15: 1337250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545385

RESUMO

For the past 300 years, hydrogen sulfide (H2S) has been considered a toxic gas. Nowadays, it has been found to be a novel signaling molecule in plants involved in the regulation of cellular metabolism, seed germination, plant growth, development, and response to environmental stresses, including high temperature (HT) and low temperature (LT). As a signaling molecule, H2S can be actively synthesized and degraded in the cytosol, chloroplasts, and mitochondria of plant cells by enzymatic and non-enzymatic pathways to maintain homeostasis. To date, plant receptors for H2S have not been found. It usually exerts physiological functions through the persulfidation of target proteins. In the past 10 years, H2S signaling in plants has gained much attention. Therefore, in this review, based on that same attention, H2S homeostasis, protein persulfidation, and the signaling role of H2S in plant response to HT and LT stress were summarized. Also, the common mechanisms of H2S-induced HT and LT tolerance in plants were updated. These mechanisms involve restoration of biomembrane integrity, synthesis of stress proteins, enhancement of the antioxidant system and methylglyoxal (MG) detoxification system, improvement of the water homeostasis system, and reestablishment of Ca2+ homeostasis and acid-base balance. These updates lay the foundation for further understanding the physiological functions of H2S and acquiring temperature-stress-resistant crops to develop sustainable food and agriculture.

14.
Plant Cell Environ ; 36(8): 1564-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23489239

RESUMO

Nitric oxide (NO) is a second messenger with multifunction that is involved in plant growth, development and the acquisition of stress tolerance. In recent years, hydrogen sulphide (H(2)S) has been found to have similar functions, but crosstalk between NO and H(2)S in the acquisition of heat tolerance is not clear. In this study, pretreatment with the NO donor sodium nitroprusside (SNP) improved the survival percentage of maize seedlings and alleviated an increase in electrolyte leakage and a decrease in tissue vitality as well as accumulation of malondialdehyde, indicating that pretreatment with SNP improved the heat tolerance of maize seedlings. In addition, pretreatment with SNP enhanced the activity of L-cystine desulfhydrase, which, in turn, induced accumulation of endogenous H(2)S, while application of H(2)S donors, NaHS and GYY4137, increased endogenous H(2)S content, followed by mitigating increase in electrolyte leakage and enhanced survival percentage of seedlings under heat stress. Interestingly, SNP-induced heat tolerance was enhanced by application of NaHS and GYY4137, but was eliminated by inhibitors of H(2)S synthesis DL-propargylglycine, aminooxyacetic acid, potassium pyruvate and hydroxylamine, and the H(2)S scavenger hypotaurine. All of the above-mentioned results suggest that SNP pretreatment could improve heat tolerance, and H(2)S may be a downstream signal molecule in NO-induced heat tolerance of maize seedlings.


Assuntos
Aclimatação , Sulfeto de Hidrogênio/farmacologia , Morfolinas/farmacologia , Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Compostos Organotiofosforados/farmacologia , Zea mays/efeitos dos fármacos , Temperatura Alta , Sulfeto de Hidrogênio/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Plântula/efeitos dos fármacos , Plântula/fisiologia , Transdução de Sinais , Zea mays/fisiologia
15.
Plant Signal Behav ; 18(1): 2163338, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36682345

RESUMO

Ammonia (NH3), as an intermediate product of nitrogen metabolism, is recognized as a novel gasotransmitter (namely gaseous signaling molecule), its signaling role being revealed in plants. NH3 exists in two different chemical forms, namely the weak base (free molecule: NH3) and the weak acid (ammonium: NH4+), which are generally in equilibrium with each other in plants. However, the effect of NH3 on seed germination, seedling growth, and thermotolerance acquirement in maize remains unclear. Here, maize seeds were imbibed in the different concentrations of NH3·H2O (NH3 donor), and then germinated and calculated seed germination rate at the various time points. Also, the 60-h-old seedlings were irrigated in the different concentrations of NH3·H2O, and then subjected to heat stress and counted survival rate. The data implied that the appropriate concentrations (6, 9, and 12 mM) of NH3·H2O accelerated seed germination as well as increased seedling height and root length compared with the control without NH3 treatment. Also, the suitable concentrations (2 and 4 mM) of NH3·H2O improved tissue vitality, relieved an increase in malondialdehyde content, and enhanced survival rate of maize seedlings under heat stress compared with the control. These results firstly suggest that NH3 could accelerate seed germination, seedling growth, and thermotolerance acquirement in maize.


Assuntos
Gasotransmissores , Termotolerância , Plântula , Germinação , Gasotransmissores/farmacologia , Zea mays , Amônia/farmacologia , Sementes
16.
Cells ; 12(14)2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508578

RESUMO

Sulfur mustard (SM) and nitrogen mustard (NM) are vesicant agents that cause skin injury and blistering through complicated cellular events, involving DNA damage, free radical formation, and lipid peroxidation. The development of therapeutic approaches targeting the multi-cellular process of tissue injury repair can potentially provide effective countermeasures to combat vesicant-induced dermal lesions. MG53 is a vital component of cell membrane repair. Previous studies have demonstrated that topical application of recombinant human MG53 (rhMG53) protein has the potential to promote wound healing. In this study, we further investigate the role of MG53 in NM-induced skin injury. Compared with wild-type mice, mg53-/- mice are more susceptible to NM-induced dermal injuries, whereas mice with sustained elevation of MG53 in circulation are resistant to dermal exposure of NM. Exposure of keratinocytes and human follicle stem cells to NM causes elevation of oxidative stress and intracellular aggregation of MG53, thus compromising MG53's intrinsic cell membrane repair function. Topical rhMG53 application mitigates NM-induced dermal injury in mice. Histologic examination reveals the therapeutic benefits of rhMG53 are associated with the preservation of epidermal integrity and hair follicle structure in mice with dermal NM exposure. Overall, these findings identify MG53 as a potential therapeutic agent to mitigate vesicant-induced skin injuries.


Assuntos
Irritantes , Mecloretamina , Camundongos , Humanos , Animais , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Irritantes/metabolismo , Queratinócitos/metabolismo , Cicatrização/fisiologia , Proteínas de Membrana/metabolismo
17.
Protoplasma ; 259(2): 357-369, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34117937

RESUMO

Among stresses, heat stress (HS) is a prime factor restricting plant growth and productivity. However, the molecular mechanisms of plants' response to HS need to be further uncovered. Here, the transcriptome response of maize seedlings to HS was dissected using transcriptome data analysis. The data exhibited that a total of 43,221 genes in maize seedlings had been found, 37,534 of which were referred, while 5686 were not. Under HS, comparison with the control without HS, there were 13,607 genes that were differentially expressed (DEGs, 6195 upregulated and 7412 downregulated). In addition, Gene Ontology (GO) enrichment analysis indicated that there were 220, 478, and 1300 terms that were enriched in cellular component, molecular function, and biological process, respectively. Significantly enriched GO terms were involved in 23 cellular components, 27 molecular functions, and 124 biological processes. Also, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that there were 2613 DEGs that were assigned to 131 pathways, 14 of which (enriched 1068 DEGs in total) were significantly upregulated. These pathways were mainly related to protein renaturation, biomembrane repair, osmotic adjustment, and redox balance. Among them, protein processing in endoplasmic reticulum was the most significantly upregulated. The transcriptome data decoded that protein renaturation, biomembrane repair, osmotic adjustment, and redox balance played a key role in the response of maize seedlings to HS.


Assuntos
Plântula , Zea mays , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Plântula/metabolismo , Transcriptoma/genética , Zea mays/metabolismo
18.
Front Plant Sci ; 13: 891626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615134

RESUMO

Sulfur dioxide (SO2) has long been viewed as toxic gas and air pollutant, but now is being verified as a signaling molecule in mammalian cells. SO2 can be endogenously produced and rapidly transformed into sulfur-containing compounds (e.g., hydrogen sulfide, cysteine, methionine, glutathione, glucosinolate, and phytochelatin) to maintain its homeostasis in plant cells. Exogenous application of SO2 in the form of gas or solution can trigger the expression of thousands of genes. The physiological functions of these genes are involved in the antioxidant defense, osmotic adjustment, and synthesis of stress proteins, secondary metabolites, and plant hormones, thus modulating numerous plant physiological processes. The modulated physiological processes by SO2 are implicated in seed germination, stomatal action, postharvest physiology, and plant response to environmental stresses. However, the review on the signaling role of SO2 in plants is little. In this review, the anabolism and catabolism of SO2 in plants were summarized. In addition, the signaling role of SO2 in seed germination, stomatal movement, fruit fresh-keeping, and plant response to environmental stresses (including drought, cold, heavy metal, and pathogen stresses) was discussed. Finally, the research direction of SO2 in plants is also proposed.

19.
Plant Signal Behav ; 17(1): 1994257, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34875972

RESUMO

Glutamic acid (Glu) is not only a protein amino acid, but also a signaling molecule, which takes part in various physiological processes in plants. Our previous study found that root-irrigation with Glu could improve the heat tolerance of maize seedlings by plant Glu receptor-like channels-mediated calcium signaling (Protoplasma, 2019; 256:1165-1169), but its molecular mechanism remains unclear. In this study, based on the our previous work, the maize seedlings were treated with 1 mM Glu prior to be exposed to heat stress (HS), and then the expression of genes related to related to methylglyoxal (MG)-scavenging and osmoregulation systems was quantified. The results showed that Glu treatment up-regulated the gene expression of Zea mays aldo-keto reductase (ZmAKR) under both non-HS and HS conditions. Also, the gene expression of Zea mays alkenal/alkenone reductase (ZmAAR), glyoxalase II (ZmGly II), pyrroline-5-carboxylate synthase (ZmP5CS), betaine dehydrogenase (ZmBADH), and trehalase (ZmTRE) was up-regualted by exogenous Glu treatment under HS conditions. These data imply that signaling molecule Glu initiated the expression of genes related to MG-scavenging and osmoregulation systems in maize seedlings, further supporting the fact that Glu-enhanced heat tolerance in plants.


Assuntos
Plântula , Zea mays , Regulação da Expressão Gênica de Plantas , Ácido Glutâmico/metabolismo , Osmorregulação/genética , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Plântula/metabolismo , Zea mays/metabolismo
20.
Protoplasma ; 259(6): 1507-1520, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35277781

RESUMO

Glutamic acid (Glu) is not only an important protein building block, but also a signaling molecule in plants. However, the Glu-boosted thermotolerance and its underlying mechanisms in plants still remain unclear. In this study, the maize seedlings were irrigated with Glu solution prior to exposure to heat stress (HS), the seedlings' thermotolerance as well as osmoregulation, glyoxalase, and non-glyoxalase systems were evaluated. The results manifested that the seedling survival and tissue vitality after HS were boosted by Glu, while membrane damage was reduced in comparison with the control seedlings without Glu treatment, indicating Glu boosted the thermotolerance of maize seedlings. Additionally, root-irrigation with Glu increased its endogenous level, reinforced osmoregulation system (i.e., an increase in the levels of proline, glycine betaine, trehalose, and total soluble sugar, as well as the activities of pyrroline-5-carboxylate synthase, betaine dehydrogenase, and trehalose-5-phosphate phosphatase) in maize seedlings under non-HS and HS conditions compared with the control. Also, Glu treatment heightened endogenous methylglyoxal level and the activities of glyoxalase system (glyoxalase I, glyoxalase II, and glyoxalase III) and non-glyoxalase system (methylglyoxal reductase, lactate dehydrogenase, aldo-ketoreductase, and alkenal/alkenone reductase) in maize seedlings under non-HS and HS conditions as compared to the control. These data hint that osmoregulation, glyoxalase, and non-glyoxalase systems are involved in signaling molecule Glu-boosted thermotolerance of maize seedlings.


Assuntos
Lactoilglutationa Liase , Termotolerância , Betaína/metabolismo , Ácido Glutâmico/metabolismo , Lactato Desidrogenases/metabolismo , Lactoilglutationa Liase/metabolismo , Ornitina-Oxo-Ácido Transaminase/metabolismo , Osmorregulação , Oxirredutases/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Prolina/metabolismo , Aldeído Pirúvico , Plântula/metabolismo , Trealose/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA