Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 297: 120750, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059681

RESUMO

Electroencephalography (EEG) has demonstrated significant value in diagnosing brain diseases. In particular, brain networks have gained prominence as they offer additional valuable insights by establishing connections between EEG signal channels. While brain connections are typically delineated by channel signal similarity, there lacks a consistent and reliable strategy for ascertaining node characteristics. Conventional node features such as temporal and frequency domain properties of EEG signals prove inadequate for capturing the extensive EEG information. In our investigation, we introduce a novel adaptive method for extracting node features from EEG signals utilizing a distinctive task-induced self-supervised learning technique. By amalgamating these extracted node features with fundamental edge features constructed using Pearson correlation coefficients, we showed that the proposed approach can function as a plug-in module that can be integrated to many common GNN networks (e.g., GCN, GraphSAGE, GAT) as a replacement of node feature selections module. Comprehensive experiments are then conducted to demonstrate the consistently superior performance and high generality of the proposed method over other feature selection methods in various of brain disorder prediction tasks, such as depression, schizophrenia, and Parkinson's disease. Furthermore, compared to other node features, our approach unveils profound spatial patterns through graph pooling and structural learning, shedding light on pivotal brain regions influencing various brain disorder prediction based on derived features.


Assuntos
Encefalopatias , Eletroencefalografia , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Humanos , Eletroencefalografia/métodos , Encefalopatias/diagnóstico por imagem , Encefalopatias/fisiopatologia , Processamento de Sinais Assistido por Computador , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Masculino , Feminino
2.
Neuroimage ; 299: 120815, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39191358

RESUMO

Using machine learning techniques to predict brain age from multimodal data has become a crucial biomarker for assessing brain development. Among various types of brain imaging data, structural magnetic resonance imaging (sMRI) and diffusion magnetic resonance imaging (dMRI) are the most commonly used modalities. sMRI focuses on depicting macrostructural features of the brain, while dMRI reveals the orientation of major white matter fibers and changes in tissue microstructure. However, their differential capabilities in reflecting newborn age and clinical implications have not been systematically studied. This study aims to explore the impact of sMRI and dMRI on brain age prediction. Comparing predictions based on T2-weighted(T2w) and fractional anisotropy (FA) images, we found their mean absolute errors (MAE) in predicting infant age to be similar. Exploratory analysis revealed for T2w images, areas such as the cerebral cortex and ventricles contribute most significantly to age prediction, whereas FA images highlight the cerebral cortex and regions of the main white matter tracts. Despite both modalities focusing on the cerebral cortex, they exhibit significant region-wise differences, reflecting developmental disparities in macro- and microstructural aspects of the cortex. Additionally, we examined the effects of prematurity, gender, and hemispherical asymmetry of the brain on age prediction for both modalities. Results showed significant differences (p<0.05) in age prediction biases based on FA images across gender and hemispherical asymmetry, whereas no significant differences were observed with T2w images. This study underscores the differences between T2w and FA images in predicting infant brain age, offering new perspectives for studying infant brain development and aiding more effective assessment and tracking of infant development.

3.
Neuroimage ; 295: 120635, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729542

RESUMO

In pursuit of cultivating automated models for magnetic resonance imaging (MRI) to aid in diagnostics, an escalating demand for extensive, multisite, and heterogeneous brain imaging datasets has emerged. This potentially introduces biased outcomes when directly applied for subsequent analysis. Researchers have endeavored to address this issue by pursuing the harmonization of MRIs. However, most existing image-based harmonization methods for MRI are tailored for 2D slices, which may introduce inter-slice variations when they are combined into a 3D volume. In this study, we aim to resolve inconsistencies between slices by introducing a pseudo-warping field. This field is created randomly and utilized to transform a slice into an artificially warped subsequent slice. The objective of this pseudo-warping field is to ensure that generators can consistently harmonize adjacent slices to another domain, without being affected by the varying content present in different slices. Furthermore, we construct unsupervised spatial and recycle loss to enhance the spatial accuracy and slice-wise consistency across the 3D images. The results demonstrate that our model effectively mitigates inter-slice variations and successfully preserves the anatomical details of the images during the harmonization process. Compared to generative harmonization models that employ 3D operators, our model exhibits greater computational efficiency and flexibility.


Assuntos
Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Humanos , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Neuroimagem/métodos , Neuroimagem/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA