Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(28): e202201887, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35514243

RESUMO

Sortase A (SrtA)-mediated ligation, a popular method for protein labeling and semi-synthesis, is limited by its reversibility and dependence on the LPxTG motif, where "x" is any amino acid. Here, we report that SrtA can mediate the efficient and irreversible ligation of a protein/peptide containing a C-terminal thioester with another protein/peptide bearing an N-terminal Gly, with broad tolerance for a wide variety of LPxT-derived sequences. This strategy, the thioester-assisted SrtA-mediated ligation, enabled the expedient preparation of proteins bearing various N- or C-terminal labels, including post-translationally modified proteins such as the Ser139-phosphorylated histone H2AX and Lys9-methylated histone H3, with less dependence on the LPxTG motif. Our study validates the chemical modification of substrates as an effective means of augmenting the synthetic capability of existing enzymatic methods.


Assuntos
Aminoaciltransferases , Aminoaciltransferases/química , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/química , Peptídeos/química , Compostos de Enxofre
2.
Angew Chem Int Ed Engl ; 60(31): 17171-17177, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34021957

RESUMO

Activity-based E2 conjugating enzyme (E2)-ubiquitin (Ub) probes have recently emerged as effective tools for studying the molecular mechanism of E3 ligase (E3)-catalyzed ubiquitination. However, the preparation of existing activity-based E2-Ub probes depends on recombination technology and bioconjugation chemistry, limiting their structural diversity. Herein we describe an expedient total chemical synthesis of an E2 enzyme variant through a hydrazide-based native chemical ligation, which enabled the construction of a structurally new activity-based E2-Ub probe to covalently capture the catalytic site of Cys-dependent E3s. Chemical cross-linking coupled with mass spectrometry (CXMS) demonstrated the utility of this new probe in structural analysis of the intermediates formed during Nedd4 and Parkin-mediated transthiolation. This study exemplifies the utility of chemical protein synthesis for the development of protein probes for biological studies.


Assuntos
Compostos de Sulfidrila/metabolismo , Ubiquitina-Proteína Ligases/análise , Ubiquitina/química , Biocatálise , Humanos , Estrutura Molecular , Compostos de Sulfidrila/química , Ubiquitina/síntese química , Ubiquitina-Proteína Ligases/metabolismo
3.
Angew Chem Int Ed Engl ; 56(43): 13333-13337, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28873270

RESUMO

Chemical ubiquitination is an effective approach for accessing structurally defined, atypical ubiquitin (Ub) chains that are difficult to prepare by other techniques. Herein, we describe a strategy that uses a readily accessible premade isopeptide-linked 76-mer (isoUb), which has an N-terminal Cys and a C-terminal hydrazide, as the key building block to assemble atypical Ub chains in a modular fashion. This method avoids the use of auxiliary-modified Lys and instead employs the canonical and therefore more robust Cys-based native chemical ligation technique. The efficiency and capacity of this isoUb-based strategy is exemplified by the cost-effective synthesis of several linkage- and length-defined atypical Ub chains, including K27-linked tetra-Ub and K11/K48-branched tri-, tetra-, penta-, and hexa-Ubs.

4.
Nat Commun ; 15(1): 1266, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341401

RESUMO

Ubiquitination, catalyzed usually by a three-enzyme cascade (E1, E2, E3), regulates various eukaryotic cellular processes. E3 ligases are the most critical components of this catalytic cascade, determining both substrate specificity and polyubiquitination linkage specificity. Here, we reveal the mechanism of a naturally occurring E3-independent ubiquitination reaction of a unique human E2 enzyme UBE2E1 by solving the structure of UBE2E1 in complex with substrate SETDB1-derived peptide. Guided by this peptide sequence-dependent ubiquitination mechanism, we developed an E3-free enzymatic strategy SUE1 (sequence-dependent ubiquitination using UBE2E1) to efficiently generate ubiquitinated proteins with customized ubiquitinated sites, ubiquitin chain linkages and lengths. Notably, this strategy can also be used to generate site-specific branched ubiquitin chains or even NEDD8-modified proteins. Our work not only deepens the understanding of how an E3-free substrate ubiquitination reaction occurs in human cells, but also provides a practical approach for obtaining ubiquitinated proteins to dissect the biochemical functions of ubiquitination.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Humanos , Peptídeos/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Engenharia de Proteínas
5.
JACS Au ; 3(10): 2873-2882, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885572

RESUMO

Dynamic monitoring of intracellular ubiquitin (Ub) conjugates is instrumental to understanding the Ub regulatory machinery. Although many biochemical approaches have been developed to characterize protein ubiquitination, chemical tools capable of temporal resolution probing of ubiquitination events remain to be developed. Here, we report the development of the first cell-permeable and stimuli-responsive Ub probe and its application for the temporal resolution profiling of ubiquitinated substrates in live cells. The probe carrying the photolabile group N-(2-nitrobenzyl)-Gly (Nbg) on the amide bond between Ub Gly75 and Gly76 is readily prepared through chemical synthesis and can be delivered to live cells by conjugation via a disulfide bond with the cyclic cell-penetrating peptide cR10D (i.e., 4-((4-(dimethylamino)phenyl)-azo)-benzoic acid-modified cyclic deca-arginine). Both in vitro and in vivo experiments showed that Ub-modifying enzymes (E1, E2s, and E3s) could not install the Ub probe onto substrate proteins prior to removal of the nitrobenzyl group, which was easily accomplished via photoirradiation. The utility and practicality of this probe were exemplified by the time-resolved biochemical and proteomic investigation of ubiquitination events in live cells during a H2O2-mediated oxidative stress response. This work shows a conceptually new family of chemical Ub tools for the time-resolved studies on dynamic protein ubiquitination in different biological processes and highlights the utility of modern chemical protein synthesis in obtaining custom-designed tools for biological studies.

6.
Chem Sci ; 11(47): 12633-12646, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34123237

RESUMO

Protein ubiquitination regulates almost every process in eukaryotic cells. The study of the many enzymes involved in the ubiquitination system and the development of ubiquitination-associated therapeutics are important areas of current research. Synthetic tools such as ubiquitin-based chemical probes have been making an increasing contribution to deciphering various biochemical components involved in ubiquitin conjugation, recruitment, signaling, and deconjugation. In the present minireview, we summarize the progress of ubiquitin-based chemical probes with an emphasis on their various structures and chemical synthesis. We discuss the utility of the ubiquitin-based chemical probes for discovering and profiling ubiquitin-dependent signaling systems, as well as the monitoring and visualization of ubiquitin-related enzymatic machinery. We also show how the probes can serve to elucidate the molecular mechanism of recognition and catalysis. Collectively, the development and application of ubiquitin-based chemical probes emphasizes the importance and utility of chemical protein synthesis in modern chemical biology.

7.
Chem Sci ; 8(10): 6881-6887, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29147513

RESUMO

Phosphorylation of S403 or S407 of the autophagic receptor protein p62 has recently been discovered to enhance the binding of p62 with ubiquitinated protein substrates to upregulate selective autophagy. To elucidate the molecular mechanism of how phosphorylation regulates the recruitment of ubiquitinated proteins, we report the first chemical synthesis of homogeneously phosphorylated p62, which enables the setting up of accurate in vitro systems for biochemical studies. Our synthesis employs the technology of sortase A-mediated protein hydrazide ligation, which successfully affords three types of phosphorylated p62 at the multi-milligram scale. Quantitative biochemical measurements show that the binding affinity of S403/S407-bisphosphorylated p62 to K63 diubiquitin is significantly higher than that of mono-phosphorylated p62. This finding suggests that phosphorylated S403 and S407 sites should bind to different epitopes on the ubiquitin chain. Furthermore, glutamate mutation is found to give a significantly impaired binding affinity, implying the necessity of using chemically synthesized phosphorylated p62 for the biochemical study of selective autophagy.

8.
Org Lett ; 16(24): 6342-5, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25436511

RESUMO

The first copper-catalyzed/promoted sp(3)-C Suzuki-Miyaura coupling reaction of gem-diborylalkanes with nonactivated electrophilic reagents is reported. Not only 1, 1-diborylalkanes but also some other gem-diborylalkanes can be coupled with nonactivated primary alkyl halides, offering a new method for sp(3)C-sp(3)C bond formation and, simultaneously, providing a new strategy for the synthesis of alkylboronic esters.


Assuntos
Compostos de Boro/química , Cobre/química , Reagentes de Ligações Cruzadas/química , Hidrocarbonetos Halogenados/química , Catálise , Ésteres , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA