RESUMO
Platinum-based therapies have revolutionized the treatment of high-grade serous ovarian cancer (HGSOC). However, high rates of disease recurrence and progression remain a major clinical concern. Impaired mitochondrial function and dysregulated reactive oxygen species (ROS), hallmarks of cancer, hold potential as therapeutic targets for selectively sensitizing cisplatin treatment. Here, we uncover an oncogenic role of the palmitoyltransferase ZDHHC12 in regulating mitochondrial function and ROS homeostasis in HGSOC cells. Analysis of The Cancer Genome Atlas (TCGA) ovarian cancer data revealed significantly elevated ZDHHC12 expression, demonstrating the strongest positive association with ROS pathways among all ZDHHC enzymes. Transcriptomic analysis of independent ovarian cancer datasets and the SNU119 cell model corroborated this association, highlighting a strong link between ZDHHC12 expression and signature pathways involving mitochondrial oxidative metabolism and ROS regulation. Knockdown of ZDHHC12 disrupted this association, leading to increased cellular complexity, ATP levels, mitochondrial activity, and both mitochondrial and cellular ROS. This dysregulation, achieved by the siRNA knockdown of ZDHHC12 or treatment with the general palmitoylation inhibitor 2BP or the fatty acid synthase inhibitor C75, significantly enhanced cisplatin cytotoxicity in 2D and 3D spheroid models of HGSOC through ROS-mediated mechanisms. Markedly, ZDHHC12 inhibition significantly augmented the anti-tumor activity of cisplatin in an ovarian cancer xenograft tumor model, as well as in an ascites-derived organoid line of platinum-resistant ovarian cancer. Our data suggest the potential of ZDHHC12 as a promising target to improve the outcome of HGSOCs in response to platinum-based chemotherapy.
Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular TumoralRESUMO
High-grade serous ovarian cancer (HGSOC) is a highly aggressive disease often developing resistance to current therapies, necessitating new treatment strategies. Our study identifies SGK1, a key effector in the PI3K pathway, as a promising therapeutic target to exploit ferroptosis, a distinct form of cell death induced by iron overload and lipid peroxidation. Importantly, SGK1 activation, whether through high expression or the constitutively active SGK1-S422D mutation, confers resistance to ferroptosis in HGSOC. Conversely, SGK1 inhibition significantly enhances sensitivity to ferroptosis, as shown by increased PTGS2 expression (a ferroptosis marker), lipid peroxidation, and toxic-free iron levels. Remarkably, this enhanced cytotoxicity is reversed by ferrostatin-1 and the iron chelator deferoxamine, highlighting the pivotal roles of lipid peroxidation and iron dysregulation in the process. Mechanistically, SGK1 protects HGSOC cells from ferroptosis via NRF2-dependent pathways, promoting glutathione synthesis and iron homeostasis, and NRF2-independent pathways via mTOR/SREBP1/SCD1-mediated lipogenesis. Notably, pharmacological SGK1 inhibition sensitizes HGSOC xenograft models to ferroptosis induction, highlighting its therapeutic potential. These findings establish SGK1 as a critical regulator of ferroptosis and suggest targeting SGK1 alongside ferroptosis pathways as a potential therapeutic strategy for HGSOC patients.
RESUMO
Cancer cells frequently exhibit aberrant redox homeostasis and adaptation to oxidative stress. Hence abrogation of redox adaptation in cancer cells can be exploited for therapeutic benefit. Here we report SGK3 functions as an anti-oxidative factor to promote cell growth and drug resistance in cervical cancers harboring PIK3CA helical domain mutations. Mechanistically, SGK3 is activated upon oxidative stress and exerts anti-ROS activity by stabilizing and activating the antioxidant enzyme catalase. SGK3 interacts with and phosphorylates catalase, promoting its tetrameric state and activity. Meanwhile, SGK3 phosphorylates GSK3ß and protects catalase from GSK3ß-ß-TrCP mediated ubiquitination and proteasomal degradation. Furthermore, SGK3 inhibition not only potentiates CDK4/6 inhibitor Palbociclib-mediated cytotoxicity, but also overcomes cisplatin resistance through ROS-mediated mechanisms. These data uncover the role of SGK3 in maintaining redox homeostasis and suggest that the SGK3-catalase antioxidant signaling axis may be therapeutically targeted to improve treatment efficacy for cervical cancers carrying PIK3CA helical domain mutations.