Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncogene ; 42(42): 3127-3141, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37658192

RESUMO

Targeting metabolic remodeling represents a potentially promising strategy for hepatocellular carcinoma (HCC) therapy. In-depth understanding on the regulation of the glutamine transporter alanine-serine-cysteine transporter 2 (ASCT2) contributes to the development of novel promising therapeutics. As a developmentally regulated RNA binding protein, RBM45 is capable to shuttle between nucleus and cytoplasm, and directly interacts with proteins. By bioinformatics analysis, we screened out that RBM45 was elevated in the HCC patient specimens and positively correlated with poor prognosis. RBM45 promoted cell proliferation, boosted xenograft tumorigenicity and accelerated HCC progression. Using untargeted metabolomics, it was found that RBM45 interfered with glutamine metabolism. Further results demonstrated that RBM45 positively associated with ASCT2 in human and mouse specimens. Moreover, RBM45 enhanced ASCT2 protein stability by counteracting autophagy-independent lysosomal degradation. Significantly, wild-type ASCT2, instead of phospho-defective mutants, rescued siRBM45-suppressed HCC cell proliferation. Using molecular docking approaches, we found AG-221, a mutant isocitrate dehydrogenase 2 (mIDH2) inhibitor for acute myeloid leukemia therapy, pharmacologically perturbed RBM45-ASCT2 interaction, decreased ASCT2 stability and suppressed HCC progression. These findings provide evidence that RBM45 plays a crucial role in HCC progression via interacting with and counteracting the degradation of ASCT2. Our findings suggest a novel alternative structural sites for the design of ASCT2 inhibitors and the agents interfering with RBM45-ASCT2 interaction may be a potential direction for HCC drug development.

2.
Biochem Pharmacol ; 190: 114641, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34077738

RESUMO

Hepatocellular carcinoma (HCC), a hypervascular solid tumor, is the most leading cause of cancer mortality worldwide. Microtubule binding agents targeting tumor vasculature have been investigated and employed clinically. C118P is a newly synthesized analog of CA4 with improved water solubility and extended half-life. The current studies investigated the pharmacological effects of C118P and its active metabolite C118. Here, we first confirmed by in vitro assays that C118 exerts microtubule depolymerization activity and by molecular docking revealed that it fits to the colchicine binding site of tubulin. In addition, we found that C118P and C118 altered microtubule dynamics and cytoskeleton in human umbilical vein endothelial cells. Accordingly, we observed that C118P and C118 inhibited angiogenesis and disrupted established vascular networks using tube formation assays and chick chorioallantoic membrane angiogenesis assays. In addition, our data showed that C118P and C118 exhibited board anti-proliferative effect on various cancer cells, including HCC cell lines, in MTT assays or Sulforhodamine B assays. Moreover, we found that C118P induced G2/M phase cell cycle arrest and apoptosis in HCC cell lines BEL7402 and SMMC7721 using flow cytometry analysis and immunoblotting assays. Finally, we confirmed that C118P suppressed HCC growth via targeting tumor vasculature and inducing apoptosis in the SMMC7721 xenograft mouse model. In conclusion, our studies revealed that C118P, as a potent microtubule destabilizing agent, exerts its multiple pharmacological effects against HCC by inducing cell cycle arrest and apoptosis, as well as targeting tumor vasculature. Thus, C118P might be a promising drug candidate for liver cancer treatment.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Microtúbulos/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos , Apoptose , Vasos Sanguíneos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Conformação Proteica , Tubulina (Proteína)/química , Moduladores de Tubulina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA