Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672423

RESUMO

BACKGROUND: Dysregulation of the endo-lysosomal-autophagy pathway has been identified as a critical factor in the pathology of various demyelinating neurodegenerative diseases, including peripheral neuropathies. This pathway plays a crucial role in transporting newly synthesized myelin proteins to the plasma membrane in myelinating Schwann cells, making these cells susceptible to lysosome-related dysfunctions. Nevertheless, the specific impact of lysosomal dysfunction in Schwann cells and its contribution to neurodegeneration remain poorly understood. METHODS: We aim to mimic lysosomal dysfunction in Schwann cells using chloroquine, a lysosomal dysfunction inducer, and to monitor lysosomal leakiness, Schwann cell viability, and apoptosis over time. Additionally, due to the ethical and experimental issues associated with cell isolation and the culturing of human Schwann cells, we use human dental pulp stem cell-derived Schwann cells (DPSC-SCs) as a model in our study. RESULTS: Chloroquine incubation boosts lysosomal presence as demonstrated by an increased Lysotracker signal. Further in-depth lysosomal analysis demonstrated an increased lysosomal size and permeability as illustrated by a TEM analysis and GAL3-LAMP1 staining. Moreover, an Alamar blue assay and Caspase-3 staining demonstrates a reduced viability and increased apoptosis, respectively. CONCLUSIONS: Our data indicate that prolonged lysosomal dysfunction leads to lysosomal permeability, reduced viability, and eventually apoptosis in human DPSC-SCs.


Assuntos
Apoptose , Sobrevivência Celular , Cloroquina , Polpa Dentária , Lisossomos , Células de Schwann , Células-Tronco , Células de Schwann/metabolismo , Células de Schwann/patologia , Lisossomos/metabolismo , Humanos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Cloroquina/farmacologia , Células-Tronco/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas
2.
Biochem Pharmacol ; 216: 115760, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604292

RESUMO

Type 1 Charcot-Marie-Tooth disease (CMT1) is the most common demyelinating peripheral neuropathy. Patients suffer from progressive muscle weakness and sensory problems. The underlying disease mechanisms of CMT1 are still unclear and no therapy is currently available, hence patients completely rely on supportive care. Balancing protein levels is a complex multistep process fundamental to maintain cells in their healthy state and a disrupted proteostasis is a hallmark of several neurodegenerative diseases. When protein misfolding occurs, protein quality control systems are activated such as chaperones, the lysosomal-autophagy system and proteasomal degradation to ensure proper degradation. However, in pathological circumstances, these mechanisms are overloaded and thereby become inefficient to clear the load of misfolded proteins. Recent evidence strongly indicates that a disbalance in proteostasis plays an important role in several forms of CMT1. In this review, we present an overview of the protein quality control systems, their role in CMT1, and potential treatment strategies to restore proteostasis.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Proteostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA