Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(5): 1229-1246.e17, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078709

RESUMO

In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.


Assuntos
Orelha Interna/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Células Receptoras Sensoriais/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Calbindina 2/genética , Cóclea/fisiologia , Surdez/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Gânglio Espiral da Cóclea/fisiologia , Transmissão Sináptica , Transgenes
2.
PLoS Biol ; 22(6): e3002665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935589

RESUMO

Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.


Assuntos
Células Ciliadas Auditivas Internas , Neurotrofina 3 , Sinapses , Animais , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Sinapses/metabolismo , Sinapses/fisiologia , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Camundongos , Limiar Auditivo , Potenciais Evocados Auditivos/fisiologia , Reflexo de Sobressalto/fisiologia , Percepção Auditiva/fisiologia , Gânglio Espiral da Cóclea/metabolismo , Feminino , Masculino , Perda Auditiva Oculta
3.
J Neurosci ; 43(50): 8801-8811, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37863653

RESUMO

Several lines of evidence have suggested that steeply sloping audiometric losses are caused by hair cell degeneration, while flat audiometric losses are caused by strial atrophy, but this concept has never been rigorously tested in human specimens. Here, we systematically compare audiograms and cochlear histopathology in 160 human cases from the archival collection of celloidin-embedded temporal bones at the Massachusetts Eye and Ear. The dataset included 106 cases from a prior study of normal-aging ears, and an additional 54 cases selected by combing the database for flat audiograms. Audiogram shapes were classified algorithmically into five groups according to the relation between flatness (i.e., SD of hearing levels across all frequencies) and low-frequency pure-tone average (i.e., mean at 0.25, 0.5, and 1.0 kHz). Outer and inner hair cell losses, neural degeneration, and strial atrophy were all quantified as a function of cochlear location in each case. Results showed that strial atrophy was worse in the apical than the basal half of the cochlea and was worse in females than in males. The degree of strial atrophy was uncorrelated with audiogram flatness. Apical atrophy was correlated with low-frequency thresholds and basal atrophy with high-frequency thresholds, and the former correlation was higher. However, a multivariable regression with all histopathological measures as predictors and audiometric thresholds as the outcome showed that strial atrophy was a significant predictor of threshold shift only in the low-frequency region, and, even there, the contribution of outer hair cell damage was larger.SIGNIFICANCE STATEMENT Cochlear pathology can only be assessed postmortem; thus, human cochlear histopathology is critical to our understanding of the mechanisms of hearing loss. Dogma holds that relative damage to sensory cells, which transduce mechanical vibration into electrical signals, versus the stria vascularis, the cellular battery that powers transduction, can be inferred by the shape of the audiogram, that is, down-sloping (hair cell damage) versus flat (strial atrophy). Here we quantified hair cell and strial atrophy in 160 human specimens to show that it is the degree of low-frequency hearing loss, rather than the audiogram slope, that predicts strial atrophy. Results are critical to the design of clinical trials for hearing-loss therapeutics, as current drugs target only hair cell, not strial, regeneration.


Assuntos
Surdez , Estria Vascular , Masculino , Feminino , Humanos , Estria Vascular/patologia , Cóclea/patologia , Surdez/patologia , Atrofia/patologia , Células Ciliadas Auditivas Externas/patologia
4.
Nature ; 553(7687): 217-221, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29258297

RESUMO

Although genetic factors contribute to almost half of all cases of deafness, treatment options for genetic deafness are limited. We developed a genome-editing approach to target a dominantly inherited form of genetic deafness. Here we show that cationic lipid-mediated in vivo delivery of Cas9-guide RNA complexes can ameliorate hearing loss in a mouse model of human genetic deafness. We designed and validated, both in vitro and in primary fibroblasts, genome editing agents that preferentially disrupt the dominant deafness-associated allele in the Tmc1 (transmembrane channel-like gene family 1) Beethoven (Bth) mouse model, even though the mutant Tmc1Bth allele differs from the wild-type allele at only a single base pair. Injection of Cas9-guide RNA-lipid complexes targeting the Tmc1Bth allele into the cochlea of neonatal Tmc1Bth/+ mice substantially reduced progressive hearing loss. We observed higher hair cell survival rates and lower auditory brainstem response thresholds in injected ears than in uninjected ears or ears injected with control complexes that targeted an unrelated gene. Enhanced acoustic startle responses were observed among injected compared to uninjected Tmc1Bth/+ mice. These findings suggest that protein-RNA complex delivery of target gene-disrupting agents in vivo is a potential strategy for the treatment of some types of autosomal-dominant hearing loss.


Assuntos
Proteínas Associadas a CRISPR/administração & dosagem , Edição de Genes/métodos , Genes Dominantes/genética , Terapia Genética/métodos , Perda Auditiva/genética , Estimulação Acústica , Alelos , Animais , Animais Recém-Nascidos , Limiar Auditivo , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/uso terapêutico , Sistemas CRISPR-Cas , Sobrevivência Celular , Cóclea/citologia , Cóclea/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Fibroblastos , Células Ciliadas Auditivas/citologia , Perda Auditiva/fisiopatologia , Perda Auditiva/prevenção & controle , Humanos , Lipossomos , Masculino , Proteínas de Membrana/genética , Camundongos , Reflexo de Sobressalto
5.
J Neurosci ; 42(11): 2253-2267, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35078924

RESUMO

Sound-level coding in the auditory nerve is achieved through the progressive recruitment of auditory nerve fibers (ANFs) that differ in threshold of activation and in the stimulus level at which the spike rate saturates. To investigate the functional state of the ANFs, the electrophysiological tests routinely used in clinics only capture the first action potentials firing in synchrony at the onset of the acoustic stimulation. Assessment of other properties (e.g., spontaneous rate and adaptation time constants) requires single-fiber recordings directly from the nerve, which for ethical reasons is not allowed in humans. By combining neuronal activity measurements at the round window and signal-processing algorithms, we constructed a peristimulus time response (PSTR), with a waveform similar to the peristimulus time histograms (PSTHs) derived from single-fiber recordings in young adult female gerbils. Simultaneous recordings of round-window PSTR and single-fiber PSTH provided models to predict the adaptation kinetics and spontaneous rate of the ANFs tuned at the PSTR probe frequency. The predictive model derived from gerbils was then validated in female mice and finally applied to humans by recording PSTRs from the auditory nerve in normal-hearing patients who underwent cerebellopontine angle surgeries. A rapid adaptation time constant of ∼3 ms and a mean spontaneous rate of ∼22 spikes/s in the 4 kHz frequency range were found. This study offers a promising diagnostic tool to map the human auditory nerve, thus opening new avenues to better understanding auditory neuropathies, tinnitus, and hyperacusis.SIGNIFICANCE STATEMENT Neural adaptation in auditory nerve fibers corresponds to the reduction in the neuronal activity to prolonged or repeated sound stimulation. For obvious ethical reasons, single-fiber recordings from the auditory nerve are not feasible in humans, creating a critical gap in extending data obtained using animal models to humans. Using electrocochleography in rodents, we inferred adaptation kinetics and spontaneous discharge rates of the auditory nerve fibers in humans. Routinely used in basic and clinical laboratories, this tool will provide a better understanding of auditory disorders such as neuropathies, tinnitus, and hyperacusis, and will help to improve hearing-aid fittings.


Assuntos
Nervo Coclear , Audição , Estimulação Acústica , Animais , Nervo Coclear/fisiologia , Potenciais Evocados Auditivos/fisiologia , Feminino , Gerbillinae , Audição/fisiologia , Humanos , Camundongos , Fibras Nervosas/fisiologia
6.
J Neurosci ; 41(20): 4439-4447, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33883202

RESUMO

Animal studies suggest that cochlear nerve degeneration precedes sensory cell degeneration in both noise-induced hearing loss (NIHL) and age-related hearing loss (ARHL), producing a hearing impairment that is not reflected in audiometric thresholds. Here, we investigated the histopathology of human ARHL and NIHL by comparing loss of auditory nerve fibers (ANFs), cochlear hair cells and the stria vascularis in a group of 52 cases with noise-exposure history against an age-matched control group. Although strial atrophy increased with age, there was no effect of noise history. Outer hair cell (OHC) loss also increased with age throughout the cochlea but was unaffected by noise history in the low-frequency region (<2 kHz), while greatly exacerbated at high frequencies (≥2 kHz). Inner hair cell (IHC) loss was primarily seen at high frequencies but was unaffected by noise at either low or high frequencies. ANF loss was substantial at all cochlear frequencies and was exacerbated by noise throughout. According to a multivariable regression model, this loss of neural channels contributes to poor word discrimination among those with similar audiometric threshold losses. The histopathological patterns observed also suggest that, whereas the low-frequency OHC loss may be an unavoidable consequence of aging, the high-frequency loss, which produces the classic down-sloping audiogram of ARHL, may be partially because of avoidable ear abuse, even among those without a documented history of acoustic overexposure.SIGNIFICANCE STATEMENT As regenerative therapeutics in sensorineural hearing loss enter clinical trials, it becomes critical to infer which cochlear pathologies are present in addition to hair cell loss. Here, by analyzing human autopsy material, we show that acoustic injury accelerates age-related primary neural degeneration, but not strial degeneration, neither of which can be inferred from audiometric thresholds. It exacerbates outer hair cell (OHC) loss only in the high-frequency half of the cochlea, suggesting that the apical loss is age-related, whereas the basal loss is partially noise induced, and therefore avoidable. Statistical analysis suggests that neural loss helps explain differences in word-recognition ability among individuals with similar audiometric thresholds. The surprising correlation between neural loss and OHC loss in the cochlea's speech region also implicates neural loss in the well-known decline in word scores as thresholds deteriorate with age.


Assuntos
Cóclea/patologia , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Provocada por Ruído/patologia , Degeneração Neural/patologia , Ruído/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Limiar Auditivo/fisiologia , Nervo Coclear/patologia , Feminino , Células Ciliadas Auditivas Internas , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/etiologia
7.
J Neurophysiol ; 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583974

RESUMO

After acoustic overexposure, many auditory-nerve fiber (ANF) synapses permanently retract from surviving cochlear hair cells. This synaptopathy is hard to diagnose, since it does not elevate audiometric thresholds until almost no synapses remain, nevertheless it may degrade discrimination of complex stimuli especially in noisy environments. Here, we study an assay based on masking the auditory brainstem responses (ABRs) to a moderate-level probe tone with continuous noise of varied sound levels, and we investigate the underlying ANF responses at the single-fiber level. Synaptopathy was induced by overexposure to octave-band noise, resulting in a permanent synaptic loss of ~50%, without permanent threshold elevation except at the highest frequencies. The normal progressive delay of ABR peaks with increasing masker level is diminished in synaptopathic ears; however, the single-fiber analysis suggests that this normal latency shift does not arise because contributing ANFs shift from low-threshold fibers (with high spontaneous rates) to high-threshold fibers (with low spontaneous rates). Rather, it may arise because of a shift in the cochlear region dominating the response. Surprisingly, the dynamic range of masking, i.e. the difference between the lowest masker level that attenuates the ABR to a fixed-level probe and the lowest masker level that eliminates the ABR, is enhanced in the synaptopathic ears. This ABR behavior mirrors the single-fiber data showing a paradoxical enhancement of onset-response synchrony and resistance to masking in responses of ANFs in the synaptopathic regions. An assay based on the dynamic range of masking could be useful in diagnosing synaptic damage in human populations.

8.
J Neurosci ; 40(33): 6357-6366, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32690619

RESUMO

Age-related hearing loss arises from irreversible damage in the inner ear, where sound is transduced into electrical signals. Prior human studies suggested that sensory-cell loss is rarely the cause; correspondingly, animal work has implicated the stria vascularis, the cellular "battery" driving the amplification of sound by hair cell "motors." Here, quantitative microscopic analysis of hair cells, auditory nerve fibers, and strial tissues in 120 human inner ears obtained at autopsy, most of whom had recent audiograms in their medical records, shows that the degree of hearing loss is well predicted from the amount of hair cell loss and that inclusion of strial damage does not improve the prediction. Although many aging ears showed significant strial degeneration throughout the cochlea, our statistical models suggest that, by the time strial tissues are lost, hair cell death is so extensive that the loss of battery is no longer important to pure-tone thresholds and that audiogram slope is not diagnostic for strial degeneration. These data comprise the first quantitative survey of hair cell death in normal-aging human cochleas, and reveal unexpectedly severe hair cell loss in low-frequency cochlear regions, and dramatically greater loss in high-frequency regions than seen in any aging animal model. Comparison of normal-aging ears to an age-matched group with acoustic-overexposure history suggests that a lifetime of acoustic overexposure is to blame.SIGNIFICANCE STATEMENT This report upends dogma about the causes of age-related hearing loss. Our analysis of over 120 autopsy specimens shows that inner-ear sensory cell loss can largely explain the audiometric patterns in aging, with minimal contribution from the stria vascularis, the "battery" that powers the inner ear, previously viewed as the major locus of age-related hearing dysfunction. Predicting inner ear damage from the audiogram is critical, now that clinical trials of therapeutics designed to regrow hair cells are underway. Our data also show that hair cell degeneration in aging humans is dramatically worse than that in aging animals, suggesting that the high-frequency hearing losses that define human presbycusis reflect avoidable contributions of chronic ear abuse to which aging animals are not exposed.


Assuntos
Células Ciliadas Auditivas Internas/patologia , Presbiacusia/patologia , Estria Vascular/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Audiometria , Vias Auditivas/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Presbiacusia/etiologia , Adulto Jovem
9.
J Neurophysiol ; 126(6): 2027-2038, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788179

RESUMO

Cochlear synaptopathy is the noise-induced or age-related loss of ribbon synapses between inner hair cells (IHCs) and auditory-nerve fibers (ANFs), first reported in CBA/CaJ mice. Recordings from single ANFs in anesthetized, noise-exposed guinea pigs suggested that neurons with low spontaneous rates (SRs) and high thresholds are more vulnerable than low-threshold, high-SR fibers. However, there is extensive postexposure regeneration of ANFs in guinea pigs but not in mice. Here, we exposed CBA/CaJ mice to octave-band noise and recorded sound-evoked and spontaneous activity from single ANFs at least 2 wk later. Confocal analysis of cochleae immunostained for pre- and postsynaptic markers confirmed the expected loss of 40%-50% of ANF synapses in the basal half of the cochlea; however, our data were not consistent with a selective loss of low-SR fibers. Rather they suggested a loss of both SR groups in synaptopathic regions. Single-fiber thresholds and frequency tuning recovered to pre-exposure levels; however, response to tone bursts showed increased peak and steady-state firing rates, as well as decreased jitter in first-spike latencies. This apparent gain-of-function increased the robustness of tone-burst responses in the presence of continuous masking noise. This study suggests that the nature of noise-induced synaptic damage varies between different species and that, in mouse, the noise-induced hyperexcitability seen in central auditory circuits is also observed at the level of the auditory nerve.NEW & NOTEWORTHY Noise-induced damage to synapses between inner hair cells and auditory-nerve fibers (ANFs) can occur without permanent hair cell damage, resulting in pathophysiology that "hides" behind normal thresholds. Prior single-fiber neurophysiology in guinea pig suggested that noise selectively targets high-threshold ANFs. Here, we show that the lingering pathophysiology differs in mouse, with both ANF groups affected and a paradoxical gain-of-function in surviving low-threshold fibers, including increased onset rate, decreased onset jitter, and reduced maskability.


Assuntos
Doenças Cocleares/fisiopatologia , Nervo Coclear/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Gânglio Espiral da Cóclea/fisiopatologia , Sinapses/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos CBA
10.
J Neurophysiol ; 125(4): 1213-1222, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33656936

RESUMO

Permanent threshold elevation after noise exposure or aging is caused by loss of sensory cells; however, animal studies show that hair cell loss is often preceded by degeneration of the synapses between sensory cells and auditory nerve fibers. Silencing these neurons is likely to degrade auditory processing and may contribute to difficulties understanding speech in noisy backgrounds. Reduction of suprathreshold ABR amplitudes can be used to quantify synaptopathy in inbred mice. However, ABR amplitudes are highly variable in humans, and thus more challenging to use. Since noise-induced neuropathy preferentially targets fibers with high thresholds and low spontaneous rate and because phase locking to temporal envelopes is particularly strong in these fibers, measuring envelope following responses (EFRs) might be a more robust measure of cochlear synaptopathy. A recent auditory model further suggests that modulation of carrier tones with rectangular envelopes should be less sensitive to cochlear amplifier dysfunction and, therefore, a better metric of cochlear neural damage than sinusoidal amplitude modulation. In this study, we measure performance scores on a variety of difficult word-recognition tasks among listeners with normal audiograms and assess correlations with EFR magnitudes to rectangular versus sinusoidal modulation. Higher harmonics of EFR magnitudes evoked by a rectangular-envelope stimulus were significantly correlated with word scores, whereas those evoked by sinusoidally modulated tones did not. These results support previous reports that individual differences in synaptopathy may be a source of speech recognition variability despite the presence of normal thresholds at standard audiometric frequencies.NEW & NOTEWORTHY Recent studies suggest that millions of people may be at risk of permanent impairment from cochlear synaptopathy, the age-related and noise-induced degeneration of neural connections in the inner ear. This study examines electrophysiological responses to stimuli designed to improve detection of neural damage in subjects with normal hearing sensitivity. The resultant correlations with word recognition performance are consistent with a contribution of cochlear neural damage to deficits in hearing in noise abilities.


Assuntos
Envelhecimento/fisiologia , Audiometria , Limiar Auditivo/fisiologia , Cóclea/fisiologia , Nervo Coclear/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica , Adolescente , Adulto , Fatores Etários , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ruído , Reconhecimento Psicológico/fisiologia , Adulto Jovem
11.
Ear Hear ; 42(4): 782-792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33259444

RESUMO

OBJECTIVES: This retrospective study tests the hypothesis that patients who have recovered from idiopathic sudden sensorineural hearing loss (SSNHL) show deficits in word recognition tasks that cannot be entirely explained by a loss in audibility. DESIGN: We reviewed the audiologic profile of 166 patients presenting with a unilateral SSNHL. Hearing loss severity, degree of threshold recovery, residual hearing loss, and word recognition performance were considered as outcome variables. Age, route of treatment, delay between SSNHL onset and treatment, and audiogram configuration were considered as predictor variables. RESULTS: Severity, residual hearing loss, and recovery were highly variable across patients. While age and onset-treatment delay could not account for the severity, residual hearing loss and recovery in thresholds, configuration of the SSNHL and overall inner ear status as measured by thresholds on the contralateral ear were predictive of threshold recovery. Speech recognition performance was significantly poorer than predicted by the speech intelligibility curve derived from the patient's audiogram. CONCLUSIONS: SSNHL is associated with (1) changes in thresholds that are consistent with ischemia and (2) speech intelligibility deficits that cannot be entirely explained by a change in hearing sensitivity.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Audição , Humanos , Estudos Retrospectivos , Inteligibilidade da Fala
12.
J Acoust Soc Am ; 150(4): 2492, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34717457

RESUMO

In recent electrocochleographic studies, the amplitude of the summating potential (SP) was an important predictor of performance on word-recognition in difficult listening environments among normal-hearing listeners; paradoxically the SP was largest in those with the worst scores. SP has traditionally been extracted by visual inspection, a technique prone to subjectivity and error. Here, we assess the utility of a fitting algorithm [Kamerer, Neely, and Rasetshwane (2020). J Acoust Soc Am. 147, 25-31] using a summed-Gaussian model to objectify and improve SP identification. Results show that SPs extracted by visual inspection correlate better with word scores than those from the model fits. We also use fast Fourier transform to decompose these evoked responses into their spectral components to gain insight into the cellular generators of SP. We find a component at 310 Hz associated with word-identification tasks that correlates with SP amplitude. This component is absent in patients with genetic mutations affecting synaptic transmission and may reflect a contribution from excitatory post-synaptic potentials in auditory nerve fibers.


Assuntos
Audiometria de Resposta Evocada , Testes Auditivos , Análise de Fourier , Humanos
13.
J Neurosci ; 39(48): 9560-9569, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31628179

RESUMO

The mammalian cochlea is innervated by two cholinergic feedback systems called the medial olivocochlear (MOC) and lateral olivocochlear (LOC) pathways, which send control signals from the brainstem back to the outer hair cells and auditory-nerve fibers, respectively. Despite countless studies of the cochlear projections of these efferent fibers in animal models, comparable data for humans are almost completely lacking. Here, we immunostained the cochlear sensory epithelium from 23 normal-aging humans (14 males and 9 females), 0-86 years of age, with cholinergic markers to quantify the normal density of MOC and LOC projections, and the degree of age-related degeneration. In younger ears, the MOC density peaks in mid-cochlear regions and falls off both apically and basally, whereas the LOC innervation peaks near the apex. In older ears, MOC density decreases dramatically, whereas the LOC density does not. The loss of MOC feedback may contribute to the age-related decrease in word recognition in noise; however, even at its peak, the MOC density is lower than in other mammals, suggesting the MOC pathway is less important for human hearing.SIGNIFICANCE STATEMENT The cochlear epithelium and its sensory innervation are modulated by the olivocochlear (OC) efferent pathway. Although the medial OC (MOC) reflex has been extensively studied in humans, via contralateral sound suppression, the cochlear projections of these cholinergic neurons have not been described in humans. Here, we use immunostaining to quantify the MOC projections to outer hair cells and lateral OC (LOC) projections to the inner hair cell area in humans 0-89 years of age. We show age-related loss of MOC, but not LOC, innervation, which likely contributes to hearing impairments, and a relative paucity of MOC terminals at all ages, which may account for the relative weakness of the human MOC reflex and the difficulty in demonstrating a robust functional role in human experiments.


Assuntos
Envelhecimento/fisiologia , Cóclea/inervação , Cóclea/fisiologia , Audição/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Criança , Pré-Escolar , Cóclea/patologia , Vias Eferentes/patologia , Vias Eferentes/fisiologia , Feminino , Cobaias , Humanos , Lactente , Recém-Nascido , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos CBA , Pessoa de Meia-Idade , Estudos Prospectivos , Especificidade da Espécie , Adulto Jovem
14.
J Neurophysiol ; 124(2): 418-431, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32639924

RESUMO

Hearing loss caused by noise exposure, ototoxic drugs, or aging results from the loss of sensory cells, as reflected in audiometric threshold elevation. Animal studies show that loss of hair cells can be preceded by loss of auditory-nerve peripheral synapses, which likely degrades auditory processing. While this condition, known as cochlear synaptopathy, can be diagnosed in mice by a reduction of suprathreshold cochlear neural responses, its diagnosis in humans remains challenging. To look for evidence of cochlear nerve damage in normal hearing subjects, we measured their word recognition performance in difficult listening environments and compared it to cochlear function as assessed by otoacoustic emissions and click-evoked electrocochleography. Several electrocochleographic markers were correlated with word scores, whereas distortion product otoacoustic emissions were not. Specifically, the summating potential (SP) was larger and the cochlear nerve action potential (AP) was smaller in those with the worst word scores. Adding a forward masker or increasing stimulus rate reduced SP in the worst performers, suggesting that this potential includes postsynaptic components as well as hair cell receptor potentials. Results suggests that some of the variance in word scores among listeners with normal audiometric threshold arises from cochlear neural damage.NEW & NOTEWORTHY Recent animal studies suggest that millions of people may be at risk of permanent impairment from cochlear synaptopathy, the age-related and noise-induced degeneration of neural connections in the inner ear that "hides" behind a normal audiogram. This study examines electrophysiological responses to clicks in a large cohort of subjects with normal hearing sensitivity. The resultant correlations with word recognition performance are consistent with an important contribution cochlear neural damage to deficits in hearing in noise abilities.


Assuntos
Potenciais de Ação/fisiologia , Nervo Coclear/fisiologia , Células Ciliadas Auditivas/fisiologia , Mascaramento Perceptivo/fisiologia , Percepção da Fala/fisiologia , Adolescente , Adulto , Audiometria de Resposta Evocada , Nervo Coclear/fisiopatologia , Perda Auditiva/fisiopatologia , Humanos , Pessoa de Meia-Idade , Ruído , Reconhecimento Psicológico/fisiologia , Adulto Jovem
15.
Hum Mol Genet ; 27(24): 4194-4203, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30169630

RESUMO

Great strides in gene discovery have been made using a multitude of methods to associate phenotypes with genetic variants, but there still remains a substantial gap between observed symptoms and identified genetic defects. Herein, we use the convergence of various genetic and genomic techniques to investigate the underpinnings of a constellation of phenotypes that include prostate cancer (PCa) and sensorineural hearing loss (SNHL) in a human subject. Through interrogation of the subject's de novo, germline, balanced chromosomal translocation, we first identify a correlation between his disorders and a poorly annotated gene known as lipid droplet associated hydrolase (LDAH). Using data repositories of both germline and somatic variants, we identify convergent genomic evidence that substantiates a correlation between loss of LDAH and PCa. This correlation is validated through both in vitro and in vivo models that show loss of LDAH results in increased risk of PCa and, to a lesser extent, SNHL. By leveraging convergent evidence in emerging genomic data, we hypothesize that loss of LDAH is involved in PCa and other phenotypes observed in support of a genotype-phenotype association in an n-of-one human subject.


Assuntos
Perda Auditiva Neurossensorial/genética , Neoplasias da Próstata/genética , Serina Proteases/genética , Translocação Genética/genética , Adulto , Idoso , Animais , Estudo de Associação Genômica Ampla , Células Germinativas/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Neoplasias da Próstata/patologia
16.
Ear Hear ; 41(3): 500-507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31490800

RESUMO

OBJECTIVES: The main objective of this study is to determine whether chronic sound deprivation leads to poorer speech discrimination in humans. DESIGN: We reviewed the audiologic profile of 240 patients presenting normal and symmetrical bone conduction thresholds bilaterally, associated with either an acute or chronic unilateral conductive hearing loss of different etiologies. RESULTS: Patients with chronic conductive impairment and a moderate, to moderately severe, hearing loss had lower speech recognition scores on the side of the pathology when compared with the healthy side. The degree of impairment was significantly correlated with the speech recognition performance, particularly in patients with a congenital malformation. Speech recognition scores were not significantly altered when the conductive impairment was acute or mild. CONCLUSIONS: This retrospective study shows that chronic conductive hearing loss was associated with speech intelligibility deficits in patients with normal bone conduction thresholds. These results are as predicted by a recent animal study showing that prolonged, adult-onset conductive hearing loss causes cochlear synaptopathy.


Assuntos
Auxiliares de Audição , Inteligibilidade da Fala , Percepção da Fala , Adulto , Limiar Auditivo , Condução Óssea , Perda Auditiva Condutiva , Humanos , Estudos Retrospectivos
17.
Ear Hear ; 41(1): 25-38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31584501

RESUMO

OBJECTIVES: Permanent threshold elevation after noise exposure, ototoxic drugs, or aging is caused by loss of sensory cells; however, animal studies show that hair cell loss is often preceded by degeneration of synapses between sensory cells and auditory nerve fibers. The silencing of these neurons, especially those with high thresholds and low spontaneous rates, degrades auditory processing and may contribute to difficulties in understanding speech in noise. Although cochlear synaptopathy can be diagnosed in animals by measuring suprathreshold auditory brainstem responses, its diagnosis in humans remains a challenge. In mice, cochlear synaptopathy is also correlated with measures of middle ear muscle (MEM) reflex strength, possibly because the missing high-threshold neurons are important drivers of this reflex. The authors hypothesized that measures of the MEM reflex might be better than other assays of peripheral function in predicting difficulties hearing in difficult listening environments in human subjects. DESIGN: The authors recruited 165 normal-hearing healthy subjects, between 18 and 63 years of age, with no history of ear or hearing problems, no history of neurologic disorders, and unremarkable otoscopic examinations. Word recognition in quiet and in difficult listening situations was measured in four ways: using isolated words from the Northwestern University auditory test number six corpus with either (a) 0 dB signal to noise, (b) 45% time compression with reverberation, or (c) 65% time compression with reverberation, and (d) with a modified version of the QuickSIN. Audiometric thresholds were assessed at standard and extended high frequencies. Outer hair cell function was assessed by distortion product otoacoustic emissions (DPOAEs). Middle ear function and reflexes were assessed using three methods: the acoustic reflex threshold as measured clinically, wideband tympanometry as measured clinically, and a custom wideband method that uses a pair of click probes flanking an ipsilateral noise elicitor. Other aspects of peripheral auditory function were assessed by measuring click-evoked gross potentials, that is, summating potential (SP) and action potential (AP) from ear canal electrodes. RESULTS: After adjusting for age and sex, word recognition scores were uncorrelated with audiometric or DPOAE thresholds, at either standard or extended high frequencies. MEM reflex thresholds were significantly correlated with scores on isolated word recognition, but not with the modified version of the QuickSIN. The highest pairwise correlations were seen using the custom assay. AP measures were correlated with some of the word scores, but not as highly as seen for the MEM custom assay, and only if amplitude was measured from SP peak to AP peak, rather than baseline to AP peak. The highest pairwise correlations with word scores, on all four tests, were seen with the SP/AP ratio, followed closely by SP itself. When all predictor variables were combined in a stepwise multivariate regression, SP/AP dominated models for all four word score outcomes. MEM measures only enhanced the adjusted r values for the 45% time compression test. The only other predictors that enhanced model performance (and only for two outcome measures) were measures of interaural threshold asymmetry. CONCLUSIONS: Results suggest that, among normal-hearing subjects, there is a significant peripheral contribution to diminished hearing performance in difficult listening environments that is not captured by either threshold audiometry or DPOAEs. The significant univariate correlations between word scores and either SP/AP, SP, MEM reflex thresholds, or AP amplitudes (in that order) are consistent with a type of primary neural degeneration. However, interpretation is clouded by uncertainty as to the mix of pre- and postsynaptic contributions to the click-evoked SP. None of the assays presented here has the sensitivity to diagnose neural degeneration on a case-by-case basis; however, these tests may be useful in longitudinal studies to track accumulation of neural degeneration in individual subjects.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Audição , Testes de Impedância Acústica , Animais , Limiar Auditivo , Orelha Média , Camundongos , Músculos , Emissões Otoacústicas Espontâneas , Reflexo Acústico
18.
J Neurosci ; 38(16): 3939-3954, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29572431

RESUMO

Gain control of the auditory system operates at multiple levels. Cholinergic medial olivocochlear (MOC) fibers originate in the brainstem and make synaptic contacts at the base of the outer hair cells (OHCs), the final targets of several feedback loops from the periphery and higher-processing centers. Efferent activation inhibits OHC active amplification within the mammalian cochlea, through the activation of a calcium-permeable α9α10 ionotropic cholinergic nicotinic receptor (nAChR), functionally coupled to calcium activated SK2 potassium channels. Correct operation of this feedback requires careful matching of acoustic input with the strength of cochlear inhibition (Galambos, 1956; Wiederhold and Kiang, 1970; Gifford and Guinan, 1987), which is driven by the rate of MOC activity and short-term facilitation at the MOC-OHC synapse (Ballestero et al., 2011; Katz and Elgoyhen, 2014). The present work shows (in mice of either sex) that a mutation in the α9α10 nAChR with increased duration of channel gating (Taranda et al., 2009) greatly elongates hair cell-evoked IPSCs and Ca2+ signals. Interestingly, MOC-OHC synapses of L9'T mice presented reduced quantum content and increased presynaptic facilitation. These phenotypic changes lead to enhanced and sustained synaptic responses and OHC hyperpolarization upon high-frequency stimulation of MOC terminals. At the cochlear physiology level these changes were matched by a longer time course of efferent MOC suppression. This indicates that the properties of the MOC-OHC synapse directly determine the efficacy of the MOC feedback to the cochlea being a main player in the "gain control" of the auditory periphery.SIGNIFICANCE STATEMENT Plasticity can involve reciprocal signaling across chemical synapses. An opportunity to study this phenomenon occurs in the mammalian cochlea whose sensitivity is regulated by efferent olivocochlear neurons. These release acetylcholine to inhibit sensory hair cells. A point mutation in the hair cell's acetylcholine receptor that leads to increased gating of the receptor greatly elongates IPSCs. Interestingly, efferent terminals from mutant mice present a reduced resting release probability. However, upon high-frequency stimulation transmitter release facilitates strongly to produce stronger and far longer-lasting inhibition of cochlear function. Thus, central neuronal feedback on cochlear hair cells provides an opportunity to define plasticity mechanisms in cholinergic synapses other than the highly studied neuromuscular junction.


Assuntos
Mutação com Ganho de Função , Células Ciliadas Auditivas/metabolismo , Plasticidade Neuronal , Receptores Nicotínicos/genética , Animais , Sinalização do Cálcio , Retroalimentação Fisiológica , Feminino , Células Ciliadas Auditivas/fisiologia , Potenciais Pós-Sinápticos Inibidores , Ativação do Canal Iônico , Masculino , Camundongos , Neurônios Eferentes/metabolismo , Neurônios Eferentes/fisiologia , Receptores Nicotínicos/metabolismo
19.
Acta Neuropathol ; 137(2): 343-357, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390121

RESUMO

Meniere's disease (MD), a syndromal inner ear disease, is commonly associated with a pathological accumulation of endolymphatic fluid in the inner ear, termed "idiopathic" endolymphatic hydrops (iEH). Although numerous precipitating/exacerbating factors have been proposed for MD, its etiology remains elusive. Here, using immunohistochemistry and in situ protein-protein interaction detection assays, we demonstrate mineralocorticoid-controlled sodium transport mechanisms in the epithelium of the extraosseous portion of the endolymphatic sac (eES) in the murine and human inner ears. Histological analysis of the eES in an extensive series of human temporal bones consistently revealed pathological changes in the eES in cases with iEH and a clinical history of MD, but no such changes were found in cases with "secondary" EH due to other otological diseases or in healthy controls. Notably, two etiologically different pathologies-degeneration and developmental hypoplasia-that selectively affect the eES in MD were distinguished. Clinical records from MD cases with degenerative and hypoplastic eES pathology revealed distinct intergroup differences in clinical disease presentation. Overall, we have identified for the first time two inner ear pathologies that are consistently present in MD and can be directly linked to the pathogenesis of EH, and which potentially affect the phenotypical presentation of MD.


Assuntos
Orelha Interna/patologia , Transporte de Íons/fisiologia , Doença de Meniere/metabolismo , Doença de Meniere/patologia , Sódio/metabolismo , Animais , Orelha Interna/metabolismo , Hidropisia Endolinfática/metabolismo , Hidropisia Endolinfática/patologia , Saco Endolinfático/metabolismo , Saco Endolinfático/patologia , Humanos , Masculino , Camundongos , Osso Temporal/metabolismo , Osso Temporal/patologia
20.
J Neurosci ; 36(13): 3755-64, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030760

RESUMO

Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause "hidden hearing loss" that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in humans. In animals, synaptopathy reduces the amplitude of auditory brainstem response (ABR) wave-I. Unfortunately, ABR wave-I is difficult to measure in humans, limiting its clinical use. Here, using analogous measurements in humans and mice, we show that the effect of masking noise on the latency of the more robust ABR wave-V mirrors changes in ABR wave-I amplitude. Furthermore, in our human cohort, the effect of noise on wave-V latency predicts perceptual temporal sensitivity. Our results suggest that measures of the effects of noise on ABR wave-V latency can be used to diagnose cochlear synaptopathy in humans. SIGNIFICANCE STATEMENT: Although there are suspicions that cochlear synaptopathy affects humans with normal hearing thresholds, no one has yet reported a clinical measure that is a reliable marker of such loss. By combining human and animal data, we demonstrate that the latency of auditory brainstem response wave-V in noise reflects auditory nerve loss. This is the first study of human listeners with normal hearing thresholds that links individual differences observed in behavior and auditory brainstem response timing to cochlear synaptopathy. These results can guide development of a clinical test to reveal this previously unknown form of noise-induced hearing loss in humans.


Assuntos
Orelha Interna/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/patologia , Ruído , Tempo de Reação/fisiologia , Sinapses/patologia , Estimulação Acústica , Adulto , Animais , Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Perda Auditiva Provocada por Ruído/fisiopatologia , Humanos , Masculino , Camundongos , Emissões Otoacústicas Espontâneas/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA