RESUMO
How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change.
Assuntos
Mudança Climática , Quercus/crescimento & desenvolvimento , Clima , Dinamarca , Europa (Continente) , França , NoruegaRESUMO
We present a database of Norway spruce phenotypic traits measured over a period of 51 years in provenance trials planted across western Germany. These trials are part of the 'Inventory Provenance Test 1964/68 with Norway spruce' (IPTNS) that tested a total of 1,100 provenances collected across Europe, both from the species natural and artificial range. Phenotypic traits (first height, later diameter at breast height, survival) were recorded at 33 trial sites of 100 provenances, each a subsample from the entire collection area that represents an approximately comparable climate space. The dataset contains 424,781 records of the same 65,518 trees ranging from age 7 to 51. Overall, it captures the considerable genetic and phenotypic intraspecific variation present in Norway spruce and should be of interest to various fields including quantitative genetics, ecology, biogeography and the adaptive management of forests.
Assuntos
Fenótipo , Picea , Picea/genética , Alemanha , ÁrvoresRESUMO
Information about the resistance and adaptive potential of tree species and provenances is needed to select suitable planting material in times of rapidly changing climate conditions. In this study, we evaluate growth responses to climatic fluctuations and extreme events for 12 provenances of northern red oak (Quercus rubra L.) that were tested across three trial sites with distinct environmental conditions in Germany. Six provenances each were sourced from the natural distribution in North America and from introduced stands in Germany. We collected increment cores of 16 trees per provenance and site. Dendroecological methods were used to compare provenance performance and establish climate-growth relationships to identify the main growth limiting factors. To evaluate the provenance response to extreme drought and frost events, three site-specific drought years were selected according to the Standardized Precipitation Evapotranspiration Index (SPEI) and 2010 as a year with an extreme late frost event. Resistance indices for these years were calculated and assessed in relation to overall growth performance. We observed a high variation in growth and in the climate sensitivity between sites depending on the prevailing climatic conditions, as well as a high intra-specific variation. Overall, summer drought and low temperatures in the early growing season appear to constrain the growth of red oak. The resistance of provenances within sites and extreme years showed considerable rank changes and interaction effects. We did not find a trade-off between growth and resistance to late frost, namely, fast growing provenances had a high frost hardiness. Further, there was no evidence for a trade-off between growth and drought hardiness. Still, responses to drought or late frost differ between provenances, pointing to dissimilar adaptive strategies. Provenances from introduced (i.e. German) stands represent suitable seed sources, as they combine a higher growth and frost hardiness compared to their North American counterparts. Drought hardiness was slightly higher in the slow-growing provenances. The results provide a better understanding of the variable adaptive strategies between provenances and help to select suitable planting material for adaptive forest management.
RESUMO
Local adaptation is key for ecotypic differentiation and species evolution. Understanding underlying genomic patterns can allow the prediction of future maladaptation and ecosystem stability. Here, we report the whole-genome resequencing of 874 individuals from 100 range-wide populations of European beech (Fagus sylvatica L.), an important forest tree species in Europe. We show that genetic variation closely mirrors geography with a clear pattern of isolation-by-distance. Genome-wide analyses for genotype-environment associations (GEAs) identify relatively few potentially adaptive variants after correcting for an overwhelming signal of statistically significant but non-causal GEAs. We characterize the single high confidence genomic region and pinpoint a candidate gene possibly involved in winter temperature adaptation via modulation of spring phenology. Surprisingly, allelic variation at this locus does not result in any apparent fitness differences in a common garden. More generally, reciprocal transplant experiments across large climate distances suggest extensive phenotypic plasticity. Nevertheless, we find indications of polygenic adaptation which may be essential in natural ecosystems. This polygenic signal exhibits broad- and fine-scale variation across the landscape, highlighting the relevance of spatial resolution. In summary, our results emphasize the importance, but also exemplify the complexity, of employing natural genetic variation for forest conservation under climate change.
Assuntos
Adaptação Fisiológica , Fagus , Variação Genética , Fagus/genética , Adaptação Fisiológica/genética , Europa (Continente) , Fenótipo , Mudança Climática , Genoma de Planta , Ecossistema , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento Completo do Genoma , Florestas , Polimorfismo de Nucleotídeo ÚnicoRESUMO
European beech, Fagus sylvatica L., is one of the most important and widespread deciduous tree species in Central Europe and is widely managed for its hard wood. The complete DNA sequence of the mitochondrial genome of Fagus sylvatica L. was assembled and annotated based on Illumina MiSeq reads and validated using long reads from nanopore MinION sequencing. The genome assembled into a single DNA sequence of 504,715 bp in length containing 58 genes with predicted function, including 35 protein-coding, 20 tRNA and three rRNA genes. Additionally, 23 putative protein-coding genes were predicted supported by RNA-Seq data. Aiming at the development of taxon-specific mitochondrial genetic markers, the tool SNPtax was developed and applied to select genic SNPs potentially specific for different taxa within the Fagales. Further validation of a small SNP set resulted in the development of four CAPS markers specific for Fagus, Fagaceae, or Fagales, respectively, when considering over 100 individuals from a total of 69 species of deciduous trees and conifers from up to 15 families included in the marker validation. The CAPS marker set is suitable to identify the genus Fagus in DNA samples from tree tissues or wood products, including wood composite products.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.
Assuntos
Árvores/crescimento & desenvolvimento , Madeira , Betula , Mudança Climática , Europa (Continente) , Fagus , Florestas , Picea , Pinus , Populus , QuercusRESUMO
Genetic diversity among 51 isolates of the mycoparasite Sphaerellopsis filum from Melampsora rusts on willow and poplar was examined using AFLP. Genetic variation was relatively low among the isolates (Nei & Li's similarities > or =90). Genetic diversity calculated using Shannon index was 0.119 at Loughgall, Northern Ireland, 0.109 at Markington, northern England, 0.039 at Craibstone, Scotland, and 0.015 at Long Ashton, southwest England. At Long Ashton, 14 out of 16 isolates shared the same AFLP bands. Two genotypes were found at both Markington and Loughgall. The low genetic diversity and a high rate of clonality suggested that asexual reproduction plays a major role in S. filum epidemics. Sequence information was also obtained from the ITS-5.8S region of the ribosomal DNA from the S. filum isolates derived from willow and poplar rusts and six isolates derived from other sources. ITS sequences were identical among all the 51 isolates from willow and poplar rusts. ITS analysis placed S. filum isolates from Melampsora spp. on willow and poplar, Puccinia coronata on grass and Melampsora sp. on Euphorbia sp. into one clade and the isolates from blackberry rust Phragmidium violaceum and larch rust Triphragmiopsis laricinum into another. Nucleotide sequence differences between the two groups were 8.4-10.4 %. The ITS-5.8S sequences obtained in this study were compared with those deposited in the GenBank database.