Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(5): 1281-1298.e26, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33592174

RESUMO

T cells are critical effectors of cancer immunotherapies, but little is known about their gene expression programs in diffuse gliomas. Here, we leverage single-cell RNA sequencing (RNA-seq) to chart the gene expression and clonal landscape of tumor-infiltrating T cells across 31 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and IDH mutant glioma. We identify potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes. Analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 (encoding CD161) as a candidate inhibitory receptor. Accordingly, genetic inactivation of KLRB1 or antibody-mediated CD161 blockade enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other human cancers. Our work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immunotherapy targets.


Assuntos
Glioma/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glioma/genética , Células Matadoras Naturais/imunologia , Lectinas Tipo C/genética , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Receptores de Superfície Celular/genética , Análise de Célula Única , Subpopulações de Linfócitos T/imunologia , Linfócitos T/citologia , Evasão Tumoral
2.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30220459

RESUMO

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Assuntos
Glioma/metabolismo , Ácido Glutâmico/biossíntese , Transaminases/fisiologia , Linhagem Celular Tumoral , Glioma/fisiopatologia , Ácido Glutâmico/efeitos dos fármacos , Glutaratos/metabolismo , Glutaratos/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/fisiologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/fisiologia , Mutação , Oxirredução/efeitos dos fármacos , Proteínas da Gravidez/genética , Proteínas da Gravidez/fisiologia , Transaminases/antagonistas & inibidores , Transaminases/genética
3.
Mol Cell ; 84(2): 261-276.e18, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38176414

RESUMO

A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Biossíntese de Proteínas , Meduloblastoma/genética , Fases de Leitura Aberta/genética , Sobrevivência Celular/genética , Neoplasias Cerebelares/genética
4.
Mol Cell ; 78(6): 1207-1223.e8, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32504554

RESUMO

Tumor interferon (IFN) signaling promotes PD-L1 expression to suppress T cell-mediated immunosurveillance. We identify the IFN-stimulated non-coding RNA 1 (INCR1) as a long noncoding RNA (lncRNA) transcribed from the PD-L1 locus and show that INCR1 controls IFNγ signaling in multiple tumor types. Silencing INCR1 decreases the expression of PD-L1, JAK2, and several other IFNγ-stimulated genes. INCR1 knockdown sensitizes tumor cells to cytotoxic T cell-mediated killing, improving CAR T cell therapy. We discover that PD-L1 and JAK2 transcripts are negatively regulated by binding to HNRNPH1, a nuclear ribonucleoprotein. The primary transcript of INCR1 binds HNRNPH1 to block its inhibitory effects on the neighboring genes PD-L1 and JAK2, enabling their expression. These findings introduce a mechanism of tumor IFNγ signaling regulation mediated by the lncRNA INCR1 and suggest a therapeutic target for cancer immunotherapy.


Assuntos
Antígeno B7-H1/genética , Interferon gama/metabolismo , RNA Longo não Codificante/genética , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Interferon gama/genética , Interferons/genética , Interferons/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Proteína 2 Ligante de Morte Celular Programada 1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos
5.
Nature ; 576(7785): 112-120, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31748746

RESUMO

The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear1,2. Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of diffuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specific gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at different rates across the glioma subtypes, and hypermutation was not associated with differences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner.


Assuntos
Glioma/genética , Adulto , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19 , Progressão da Doença , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Polimorfismo de Nucleotídeo Único , Recidiva
6.
Nature ; 565(7738): 234-239, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568305

RESUMO

Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Glioblastoma/imunologia , Glioblastoma/terapia , Linfócitos T/imunologia , Adulto , Idoso , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dexametasona/administração & dosagem , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Supressoras de Tumor/genética , Adulto Jovem
7.
Nature ; 572(7767): 74-79, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31341285

RESUMO

Medulloblastoma is a malignant childhood cerebellar tumour type that comprises distinct molecular subgroups. Whereas genomic characteristics of these subgroups are well defined, the extent to which cellular diversity underlies their divergent biology and clinical behaviour remains largely unexplored. Here we used single-cell transcriptomics to investigate intra- and intertumoral heterogeneity in 25 medulloblastomas spanning all molecular subgroups. WNT, SHH and Group 3 tumours comprised subgroup-specific undifferentiated and differentiated neuronal-like malignant populations, whereas Group 4 tumours consisted exclusively of differentiated neuronal-like neoplastic cells. SHH tumours closely resembled granule neurons of varying differentiation states that correlated with patient age. Group 3 and Group 4 tumours exhibited a developmental trajectory from primitive progenitor-like to more mature neuronal-like cells, the relative proportions of which distinguished these subgroups. Cross-species transcriptomics defined distinct glutamatergic populations as putative cells-of-origin for SHH and Group 4 subtypes. Collectively, these data provide insights into the cellular and developmental states underlying subtype-specific medulloblastoma biology.


Assuntos
Genômica , Meduloblastoma/genética , Meduloblastoma/patologia , Análise de Célula Única , Transcriptoma , Adolescente , Adulto , Animais , Linhagem da Célula , Cerebelo/metabolismo , Cerebelo/patologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Lactente , Meduloblastoma/classificação , Camundongos , Neurônios/metabolismo , Neurônios/patologia
8.
Cell ; 138(1): 172-85, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19596243

RESUMO

The transcriptional control of CNS myelin gene expression is poorly understood. Here we identify gene model 98, which we have named myelin gene regulatory factor (MRF), as a transcriptional regulator required for CNS myelination. Within the CNS, MRF is specifically expressed by postmitotic oligodendrocytes. MRF is a nuclear protein containing an evolutionarily conserved DNA binding domain homologous to a yeast transcription factor. Knockdown of MRF in oligodendrocytes by RNA interference prevents expression of most CNS myelin genes; conversely, overexpression of MRF within cultured oligodendrocyte progenitors or the chick spinal cord promotes expression of myelin genes. In mice lacking MRF within the oligodendrocyte lineage, premyelinating oligodendrocytes are generated but display severe deficits in myelin gene expression and fail to myelinate. These mice display severe neurological abnormalities and die because of seizures during the third postnatal week. These findings establish MRF as a critical transcriptional regulator essential for oligodendrocyte maturation and CNS myelination.


Assuntos
Encéfalo/citologia , Regulação da Expressão Gênica , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Fatores de Transcrição/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia
9.
Cell Mol Life Sci ; 80(6): 147, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171617

RESUMO

BACKGROUND: Functional profiling of freshly isolated glioblastoma (GBM) cells is being evaluated as a next-generation method for precision oncology. While promising, its success largely depends on the method to evaluate treatment activity which requires sufficient resolution and specificity. METHODS: Here, we describe the 'precision oncology by single-cell profiling using ex vivo readouts of functionality' (PROSPERO) assay to evaluate the intrinsic susceptibility of high-grade brain tumor cells to respond to therapy. Different from other assays, PROSPERO extends beyond life/death screening by rapidly evaluating acute molecular drug responses at single-cell resolution. RESULTS: The PROSPERO assay was developed by correlating short-term single-cell molecular signatures using mass cytometry by time-of-flight (CyTOF) to long-term cytotoxicity readouts in representative patient-derived glioblastoma cell cultures (n = 14) that were exposed to radiotherapy and the small-molecule p53/MDM2 inhibitor AMG232. The predictive model was subsequently projected to evaluate drug activity in freshly resected GBM samples from patients (n = 34). Here, PROSPERO revealed an overall limited capacity of tumor cells to respond to therapy, as reflected by the inability to induce key molecular markers upon ex vivo treatment exposure, while retaining proliferative capacity, insights that were validated in patient-derived xenograft (PDX) models. This approach also allowed the investigation of cellular plasticity, which in PDCLs highlighted therapy-induced proneural-to-mesenchymal (PMT) transitions, while in patients' samples this was more heterogeneous. CONCLUSION: PROSPERO provides a precise way to evaluate therapy efficacy by measuring molecular drug responses using specific biomarker changes in freshly resected brain tumor samples, in addition to providing key functional insights in cellular behavior, which may ultimately complement standard, clinical biomarker evaluations.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Medicina de Precisão , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
10.
Mod Pathol ; 35(12): 1770-1774, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36057740

RESUMO

Central nervous system (CNS) germ cell tumors (GCTs) represent 2-3% of all primary CNS tumors. The majority are germinomas, which are radiosensitive and have an excellent prognosis. Contrarily, CNS non-germinomatous GCTs (NGGCTs) have less favorable prognosis and require more aggressive treatment. The expression of checkpoint/immune markers in CNS GCTs, particularly NGGCTs, is unknown. We previously reported a case of a patient whose intracranial NGGCT (predominantly choriocarcinoma) responded to immune checkpoint inhibition therapy. This case led us to evaluate our archive of intracranial GCTs for expression of PD-L1 and PD-1. With IRB approval, we searched the pathology archives at our institution for CNS GCTs. Demographic, radiologic, clinical, and histologic information was extracted from the medical records. Immunohistochemistry for lymphocytic markers (CD4, CD8, CD20), PD-1, and PD-L1 was performed. PD-L1 was considered positive if greater than 1% of tumor cells were positive and PD-1 was reported as a percentage of positive inflammatory cells. Fifty cases were identified, including 28 germinomas (mean age at diagnosis: 15.5 years; 17 males, 11 females), and 22 NGGCTs (mean age at diagnosis: 12.0 years, 21 males, 1 female). Germinomas were mostly suprasellar (17/28) and NGGCTs were predominantly pineal (17/22). Twenty-two germinomas (79%) were positive for PD-L1 expression, and 13 NGGCTs (57%) were positive for PD-L1. Cases of choriocarcinoma showed the most diffuse PD-L1 expression. PD-1 expression was seen in lymphocytes among 27/28 of the germinomas and 20/23 of the NGGCTs (ranging from 1-40% of lymphocytes). As expected, larger quantities of inflammatory cells were present in cases of germinoma. We demonstrate immune activity in CNS GCTs, and our results suggest that immune checkpoint inhibitors may be efficacious in the treatment of intracranial GCTs. Among NGGCTs, cases of choriocarcinoma showed the highest expression of PD-L1 in tumor cells, suggesting that this subtype may have the greatest benefit from checkpoint blockade.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Coriocarcinoma , Germinoma , Neoplasias Embrionárias de Células Germinativas , Criança , Masculino , Humanos , Feminino , Adolescente , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Germinoma/patologia , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/patologia , Sistema Nervoso Central/patologia
11.
Bioinformatics ; 37(16): 2461-2463, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33247715

RESUMO

SUMMARY: The expansion of targeted panel sequencing efforts has created opportunities for large-scale genomic analysis, but tools for copy-number quantification on panel data are lacking. We introduce ASCETS, a method for the efficient quantitation of arm and chromosome-level copy-number changes from targeted sequencing data. AVAILABILITY AND IMPLEMENTATION: ASCETS is implemented in R and is freely available to non-commercial users on GitHub: https://github.com/beroukhim-lab/ascets, along with detailed documentation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aneuploidia , Software , Documentação , Genoma , Genômica , Humanos
12.
J Neurooncol ; 158(1): 111-116, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35474499

RESUMO

PURPOSE: Gliosarcoma is an uncommon glioblastoma subtype, for which MGMT promoter methylation's relationship with response to temozolomide chemotherapy is unclear. We therefore examined this question using a national cohort. METHODS:  The National Cancer Database was queried for patients histopathologically diagnosed with gliosarcoma between 2010 and 2019. The associations between MGMT promoter methylation, first-line single-agent chemotherapy-presumed to be temozolomide herein-and overall survival (OS) were examined using log-rank tests and Cox regression, with correction for multiple testing (p < 0.01 was significant). RESULTS: 580 newly-diagnosed gliosarcoma patients with MGMT status were available, among whom 33.6% were MGMT promoter methylated. Median OS for gliosarcoma patients that received standard-of-care temozolomide and radiotherapy was 12.1 months (99% confidence interval [CI] 10.8-15.1) for MGMT promoter unmethylated and 21.4 months (99% CI 15.4-26.2) for MGMT promoter methylated gliosarcomas (p = 0.003). In multivariable analysis of gliosarcoma patients-which included the potential confounders of age, sex, maximal tumor size, extent of resection, and radiotherapy-receipt of temozolomide was associated with improved OS in both MGMT promoter methylated (hazard ratio [HR] 0.23 vs. no temozolomide, 99% CI 0.11-0.47, p < 0.001) and unmethylated (HR 0.50 vs. no temozolomide, 99% CI 0.29-0.89, p = 0.002) gliosarcomas. MGMT promoter methylation was associated with improved OS among temozolomide-treated gliosarcoma patients (p < 0.001), but not in patients who did not receive chemotherapy (p = 0.35). CONCLUSION: In a national analysis of gliosarcoma patients, temozolomide was associated with prolonged OS irrespective of MGMT status. These results provide support for the current practice of trimodal therapy for gliosarcoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Gliossarcoma , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Gliossarcoma/genética , Gliossarcoma/terapia , Humanos , Temozolomida/uso terapêutico , Proteínas Supressoras de Tumor/genética
13.
J Neurooncol ; 159(1): 211-218, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35715666

RESUMO

PURPOSE: The relationship between peritumoral neuronal activity, early onset clinical seizures, and glioma survival outcomes remains poorly understood. Hyperexcitability on continuous EEG in the peri-operative period was studied as a prognostic biomarker in patients with newly diagnosed IDH-wildtype diffuse glioma. METHODS: A retrospective observational cohort study was performed including adults with newly diagnosed diffuse glioma, absence of IDH1/2 mutations, and continuous EEG monitoring prior to chemoradiation and within 1 month of initial resection. EEG hyperexcitability was defined by the presence of lateralized periodic discharges and/or electrographic seizures. The primary outcome of overall survival was estimated using the Kaplan-Meier method and compared between groups using multivariate Cox proportional hazards model. RESULTS: There were 424 patients without continuous EEG and 32 with continuous EEG, of whom lateralized periodic discharges and/or electrographic seizures were seen in 17 (53%). Peri-operative EEG hyperexcitability was associated with decreased overall survival in multivariate analysis (median 12.5 [95% CI 6.2-25.6] months with hyperexcitability versus median 19.9 [95% CI 8.9-53.5] months without hyperexcitability, p = 0.043). Compared to patients without continuous EEG, overall survival was decreased in patients with hyperexcitability (p < 0.0001) and similar in patients without hyperexcitability (p = 0.193). Patients with and without hyperexcitability had similar rates of exposure to anti-seizure medication at baseline, and in long-term follow-up had no difference in number of medications required for seizure control. CONCLUSIONS: These findings indicate the potential prognostic value of a clinical EEG biomarker of glioma aggressiveness prior to the initiation of chemoradiation.


Assuntos
Eletroencefalografia , Glioma , Adulto , Eletroencefalografia/métodos , Glioma/genética , Humanos , Prognóstico , Estudos Retrospectivos
14.
J Neurooncol ; 157(3): 499-510, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35384518

RESUMO

PURPOSE: We sought to characterize clinical outcomes for adult and pediatric patients with primary CNS tumors harboring DICER1 mutations or loss of DICER1. METHODS: We conducted a retrospective cohort study of 98 patients who were treated between 1995 and 2020 for primary CNS tumors containing DICER1 mutations or loss of DICER1 on chromosome 14q, identified by targeted next generation sequencing. Kaplan-Meier plots and log rank tests were used to analyze survival. Cox proportional-hazards model was used for univariate and multivariable analyses for all-cause mortality (ACM). RESULTS: Within our cohort, the most common malignancies were grade 3/4 glioma (61%), grade 1/2 glioma (17%), and CNS sarcoma (6%). Sarcoma and non-glioma histologies, and tumors with biallelic DICER1 mutations or deletions were common in the pediatric population. Mutations occurred throughout DICER1, including missense mutations in the DexD/H-box helicase, DUF283, RNaseIIIa, and RNaseIIIb domains. For patients with grade 3/4 glioma, MGMT methylation (Hazard ratio [HR] 0.35, 95% Confidence Interval [CI] 0.16-0.73, p = 0.005), IDH1 R132 mutation (HR 0.11, 95% CI 0.03-0.41, p = 0.001), and missense mutation in the DexD/H-box helicase domain (HR 0.06, 95% CI 0.01-0.38, p = 0.003) were independently associated with longer time to ACM on multivariable analyses. CONCLUSION: DICER1 mutations or loss of DICER1 occur in diverse primary CNS tumors, including previously unrecognized grade 3/4 gliomas as the most common histology. While prior studies have described RNaseIIIb hotspot mutations, we document novel mutations in additional DICER1 functional domains. Within the grade 3/4 glioma cohort, missense mutation in the DexD/H-box helicase domain was associated with prolonged survival.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioma , Sarcoma , Adulto , Neoplasias do Sistema Nervoso Central/genética , Criança , RNA Helicases DEAD-box/genética , Glioma/patologia , Humanos , Mutação , Prognóstico , Estudos Retrospectivos , Ribonuclease III/genética , Sarcoma/patologia
15.
Genes Dev ; 28(5): 479-90, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24589777

RESUMO

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles. Global induction of mutant IDH2 expression in adults resulted in dilated cardiomyopathy, white matter abnormalities throughout the central nervous system (CNS), and muscular dystrophy. Embryonic activation of mutant IDH2 resulted in more pronounced phenotypes, including runting, hydrocephalus, and shortened life span, recapitulating the abnormalities observed in D2HGA patients. The diseased hearts exhibited mitochondrial damage and glycogen accumulation with a concordant up-regulation of genes involved in glycogen biosynthesis. Notably, mild cardiac hypertrophy was also observed in nude mice implanted with IDH2(R140Q)-expressing xenografts, suggesting that 2HG may potentially act in a paracrine fashion. Finally, we show that silencing of IDH2(R140Q) in mice with an inducible transgene restores heart function by lowering 2HG levels. Together, these findings indicate that inhibitors of mutant IDH2 may be beneficial in the treatment of D2HGA and suggest that 2HG produced by IDH mutant tumors has the potential to provoke a paraneoplastic condition.


Assuntos
Cardiomiopatias/genética , Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Mutação , Doenças Neurodegenerativas/genética , Animais , Cardiomiopatias/enzimologia , Cardiomiopatias/patologia , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiopatologia , Humanos , Isocitrato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia
16.
Curr Opin Oncol ; 33(6): 626-634, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34651608

RESUMO

PURPOSE OF REVIEW: Recent evidence suggests high tumor mutational burden (TMB-H) as a predictor of response to immune checkpoint blockade (ICB) in cancer. However, results in TMB-H gliomas have been inconsistent. In this article, we discuss the main pathways leading to TMB-H in glioma and how these might affect immunotherapy response. RECENT FINDINGS: Recent characterization of TMB-H gliomas showed that 'post-treatment' related to mismatch repair (MMR) deficiency is the most common mechanism leading to TMB-H in gliomas. Unexpectedly, preliminary evidence suggested that benefit with ICB is rare in this population. Contrary to expectations, ICB response was reported in a subset of TMB-H gliomas associated with constitutional MMR or polymerase epsilon (POLE) defects (e.g., constitutional biallelic MMRd deficiency). In other cancers, several trials suggest increased ICB efficacy is critically associated with increased lymphocyte infiltration at baseline which is missing in most gliomas. Further characterization of the immune microenvironment of gliomas is needed to identify biomarkers to select the patients who will benefit from ICB. SUMMARY: Intrinsic molecular and immunological differences between gliomas and other cancers might explain the lack of efficacy of ICB in a subset of TMB-H gliomas. Novel combinations and biomarkers are awaited to improve immunotherapy response in these cancers.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Glioma/genética , Glioma/imunologia , Mutação , Neoplasias Encefálicas/terapia , Glioma/terapia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Valor Preditivo dos Testes , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Mod Pathol ; 34(7): 1236-1244, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33772213

RESUMO

The 2016 WHO classifies IDH-mutant gliomas into oligodendroglioma or diffuse astrocytoma based on co-occurring genetic events. Recent literature addresses the concept of stratifying IDH-mutant gliomas based on prognostically significant molecular events. However, the presence of a second class-defining driver alteration in IDH-mutant gliomas has not been systematically described. We searched the sequencing database at our institutions as well as The Cancer Genome Atlas (TCGA) and cBioPortal for IDH-mutant gliomas with other potentially significant alterations. For each case, we reviewed the clinical information, histology and genetic profile. Of 1702 gliomas tested on our targeted exome sequencing panel, we identified 364 IDH-mutated gliomas, four of which had pathogenic FGFR alterations and one with BRAF V600E mutation. Five additional IDH-mutant gliomas with NTRK fusions were identified through collaboration with an outside institution. Also, a search in the glioma database in cBioPortal (5379 total glioma samples, 1515 cases [28.1%] with IDH1/2 mutation) revealed eight IDH-mutated gliomas with FGFR, NTRK or BRAF pathogenic alterations. All IDH-mutant gliomas with dual mutations identified were hemispheric and had a mean age at diagnosis of 36.2 years (range 16-55 years old). Co-occurring genetic events involved MYCN, RB and PTEN. Notable outcomes included a patient with an IDH1/FGFR1-mutated anaplastic oligodendroglioma who has survived 20 years after diagnosis. We describe a series of 18 IDH-mutant gliomas with co-occurring genetic events that have been described as independent class-defining drivers in other gliomas. While these tumors are rare and the significance of these alterations needs further exploration, alterations in FGFR, NTRK, and BRAF could have potential therapeutic implications and affect clinical trial design and results in IDH-mutant studies. Our data highlights that single gene testing for IDH1 in diffuse gliomas may be insufficient for detection of targets with potential important prognostic and treatment value.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Adolescente , Adulto , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
18.
Mod Pathol ; 34(2): 264-279, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33051600

RESUMO

Subependymal giant-cell astrocytomas (SEGAs) are slow-growing brain tumors that are a hallmark feature seen in 5-10% of patients with Tuberous Sclerosis Complex (TSC). Though histologically benign, they can cause serious neurologic symptoms, leading to death if untreated. SEGAs consistently show biallelic loss of TSC1 or TSC2. Herein, we aimed to define other somatic events beyond TSC1/TSC2 loss and identify potential transcriptional drivers that contribute to SEGA formation. Paired tumor-normal whole-exome sequencing was performed on 21 resected SEGAs from 20 TSC patients. Pathogenic variants in TSC1/TSC2 were identified in 19/21 (90%) SEGAs. Copy neutral loss of heterozygosity (size range: 2.2-46 Mb) was seen in 76% (16/21) of SEGAs (44% chr9q and 56% chr16p). An average of 1.4 other somatic variants (range 0-7) per tumor were identified, unlikely of pathogenic significance. Whole transcriptome RNA-sequencing analyses revealed 190 common differentially expressed genes in SEGA (n = 16, 13 from a prior study) in pairwise comparison to each of: low grade diffuse gliomas (n = 530) and glioblastoma (n = 171) from The Cancer Genome Atlas (TCGA) consortium, ganglioglioma (n = 10), TSC cortical tubers (n = 15), and multiple normal tissues. Among these, homeobox transcription factors (TFs) HMX3, HMX2, VAX1, SIX3; and TFs IRF6 and EOMES were all expressed >12-fold higher in SEGAs (FDR/q-value < 0.05). Immunohistochemistry supported the specificity of IRF6, VAX1, SIX3 for SEGAs in comparison to other tumor entities and normal brain. We conclude that SEGAs have an extremely low somatic mutation rate, suggesting that TSC1/TSC2 loss is sufficient to drive tumor growth. The unique and highly expressed SEGA-specific TFs likely reflect the neuroepithelial cell of origin, and may also contribute to the transcriptional and epigenetic state that enables SEGA growth following two-hit loss of TSC1 or TSC2 and mTORC1 activation.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Adolescente , Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Transcriptoma , Adulto Jovem
19.
Histopathology ; 78(2): 265-275, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32692439

RESUMO

AIMS: Primary intracranial sarcoma, DICER1-mutant is a recently described central nervous system tumour with specific genomic and DNA-methylation profiles. Although some of its histological features (focal spindle-cell morphology, intracytoplasmic eosinophilic granules, and focal heterologous differentiation) are common across most reported cases, the presence of significant histological variability and the lack of differentiation pose diagnostic challenges. We aim to further define the immunoprofile of this tumor. METHODS AND RESULTS: We reviewed the clinical history and performed immunohistochemistry for glial fibrillary acidic protein, oligodendrocyte transcription factor 2, SOX2, SOX10, S100, histone H3 trimethylated on lysine 27 (H3K27me3), desmin, myogenin, CD99, epithelial membrane antigen (EMA) and transducin-like enhancer of split 1 (TLE1) on six primary intracranial sarcomas, DICER1-mutant, with appropriate controls. Targeted exome sequencing was performed on all cases. The sarcomas showed diffuse (n = 4), mosaic (n = 1) or minimal (≤5%, n = 1) loss of H3K27 trimethylation and nuclear TLE1 expression (n = 6). Four had immunohistochemical evidence of myogenic differentiation. SOX2, SOX10, S100 and EMA were negative; CD99 expression ranged from focal cytoplasmic (n = 4) to crisp diffuse membranous (n = 2). One tumour had focal cartilaginous differentiation. Similar immunohistochemical findings were observed in a pleuropulmonary blastoma (albeit with focal TLE1 expression), a DICER1-related pineoblastoma, and an embryonal tumour with a multilayered rosette-like DICER1-related cerebellar tumour. Targeted exome sequencing confirmed the presence of pathogenic biallelic DICER1 mutations in all tumours included in this study. CONCLUSION: We conclude that H3K27me3 and TLE1 immunostains, when utilised in combination, can be helpful diagnostic markers for primary intracranial sarcoma, DICER1-mutant.


Assuntos
Neoplasias Encefálicas , RNA Helicases DEAD-box/genética , Histonas/metabolismo , Ribonuclease III/genética , Sarcoma , Transducina , Adolescente , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica/métodos , Lactente , Lisina/metabolismo , Masculino , Metilação , Mutação , Sarcoma/genética , Sarcoma/patologia , Transducina/genética , Transducina/metabolismo
20.
Nature ; 520(7547): 363-7, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25855294

RESUMO

Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicina Hidroximetiltransferase/metabolismo , Glicina/metabolismo , Isquemia/metabolismo , Acetona/análogos & derivados , Acetona/metabolismo , Acetona/toxicidade , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/enzimologia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Glioblastoma/irrigação sanguínea , Glioblastoma/enzimologia , Glicina Desidrogenase (Descarboxilante)/antagonistas & inibidores , Glicina Desidrogenase (Descarboxilante)/metabolismo , Humanos , Isquemia/enzimologia , Isquemia/patologia , Camundongos , Necrose , Consumo de Oxigênio , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/toxicidade , Piruvato Quinase/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA