Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Invest New Drugs ; 38(6): 1653-1663, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32367200

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent type of tumor among primary liver tumors and is the second highest cause of cancer-related deaths worldwide. Current therapies are controversial, and more research is needed to identify effective treatments. A new synthetic compound, potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65), is a potent inhibitor of the human uridine phosphorylase-1 (hUP1) enzyme, which controls the cell concentration of uridine (Urd). Urd is a natural pyrimidine nucleoside involved in cellular processes, such as RNA synthesis. In addition, it is considered a promising biochemical modulator, as it may reduce the toxicity caused by chemotherapeutics without impairing its anti-tumor activity. Thus, the objective of this study is to evaluate the effects of CPBMF65 on the proliferation of the human hepatocellular carcinoma cell line (HepG2). Cell proliferation, cytotoxicity, apoptosis, senescence, autophagy, intracellular Urd levels, cell cycle arrest, and drug resistance were analyzed. Results demonstrate that, after incubation with CPBMF65, HepG2 cell proliferation decreased, mainly through cell cycle arrest and senescence, increasing the levels of intracellular Urd and maintaining cell proliferation reduced during chronic treatment. In conclusion, results show, for the first time, the ability of a hUP1 inhibitor (CPBMF65) to reduce HepG2 cell proliferation through cell cycle arrest and senescence.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Piridinas/farmacologia , Uridina Fosforilase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Células Hep G2 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Uridina/farmacologia
2.
Biometals ; 30(4): 549-558, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28639108

RESUMO

Hepatic fibrosis is an extracellular matrix deposition by hepatic stellate cells (HSC). Fibrosis can be caused by iron, which will lead to hydroxyl radical production and cell damage. Fructose-1,6-bisphosphate (FBP) has been shown to deliver therapeutic effects in many pathological situations. In this work, we aimed to test the effects of FBP in HSC cell line, GRX, exposed to an excess of iron (Fe). The Fe-treatment increased cell proliferation and FBP reversed this effect, which was not due to increased necrosis, apoptosis or changes in cell cycle. Oil Red-O staining showed that FBP successfully increased lipid content and lead GRX cells to present characteristics of quiescent HSC. Fe-treatment decreased PPAR-γ expression and increased Col-1 expression. Both effects were reversed by FBP which also decreased TGF-ß1 levels in comparison to both control and Fe groups. FBP, also, did not present scavenger activity in the DPPH assay. The treatment with FBP resulted in decreased proliferation rate, Col-1 expression and TGF-ß1 release by HSC cells. Furthermore, activated PPAR-γ and increased lipid droplets induce cells to become quiescent, which is a key event to reversion of hepatic fibrosis. FBP also chelates iron showing potential to improve Cell redox state.


Assuntos
Compostos Ferrosos/antagonistas & inibidores , Frutosedifosfatos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Quelantes de Ferro/farmacologia , Animais , Compostos de Bifenilo/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Compostos Ferrosos/farmacologia , Regulação da Expressão Gênica , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Camundongos , Oxirredução , PPAR gama/genética , PPAR gama/metabolismo , Picratos/química , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3857-3866, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37358795

RESUMO

In pulmonary fibrosis, the proliferation of fibroblasts and their differentiation into myofibroblasts is often caused by tissue damage, such as oxidative damage caused by reactive oxygen species, which leads to progressive rupture and thus destruction of the alveolar architecture, resulting in cell proliferation and tissue remodeling. Bezafibrate (BZF) is an important member of the peroxisome proliferator-activated receptor (PPARs) family agonists, used in clinical practice as antihyperlipidemic. However, the antifibrotic effects of BZF are still poorly studied. The objective of this study was to evaluate the effects of BZF on pulmonary oxidative damage in lung fibroblast cells. MRC-5 cells were treated with hydrogen peroxide (H2O2) to induce oxidative stress activation and BZF treatment was administered at the same moment as H2O2 induction. The outcomes evaluated were cell proliferation and cell viability; oxidative stress markers such as reactive oxygen species (ROS), catalase (CAT) levels and thiobarbituric acid reactive substances (TBARS); col-1 and α-SMA mRNA expression and cellular elasticity through Young's modulus analysis evaluated by atomic force microscopy (AFM). The H2O2-induced oxidative damage decreased the cell viability and increased ROS levels and decreased CAT activity in MRC-5 cells. The expression of α-SMA and the cell stiffness increased in response to H2O2 treatment. Treatment with BZF decreased the MRC-5 cell proliferation, ROS levels, reestablished CAT levels, decreased the mRNA expression of type I collagen protein (col-1) and α-smooth muscle actin (α-SMA), and cellular elasticity even with H2O2 induction. Our results suggest that BZF has a potential protective effect on H2O2-induced oxidative stress. These results are based on an in vitro experiment, derived from a fetal lung cell line and may emerge as a possible new therapy for the treatment of pulmonary fibrosis.


Assuntos
Peróxido de Hidrogênio , Fibrose Pulmonar , Humanos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bezafibrato/farmacologia , Bezafibrato/metabolismo , Fibrose Pulmonar/patologia , Pulmão/metabolismo , Estresse Oxidativo , Fibroblastos , RNA Mensageiro/metabolismo
5.
EXCLI J ; 19: 962-971, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32788910

RESUMO

Octyl gallate (OG) is an antioxidant commonly used in food, although there is no definition of its acceptable daily intake. There are reports in vitro and in vivo showing that food additives and drugs can alter lipid metabolism. Lipid droplet accumulation in hepatic cells is one of the main findings in the unregulated lipid metabolism and is strongly related to the development of nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the effects of OG on lipid metabolism in the hepatocellular carcinoma cell line (HepG2). The results have shown, for the first time, that treatment with OG increased the overall amount of lipids, the triglyceride concentration, the lipid droplet area, and SREBP-1c and PPAR-γ gene expression. Taken together, the findings indicate that OG induces lipid droplet accumulation in HepG2 cells through the regulation of SREBP-1c and PPAR-γ gene expression without involving mTOR/S6K1 and may contribute to NAFLD when used as a food additive.

6.
EXCLI J ; 18: 540-548, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611738

RESUMO

The incidence of hepatocellular carcinoma (HCC) keeps rising year by year, and became the second leading cause of cancer-related death. Some studies have found that liraglutide, a GLP-1 analog, may decrease the tumor cells proliferation. Due to this, the aim of this work is to investigate the antiproliferative potential of exenatide, another GLP-1 analog. Cell proliferation was assessed by direct count with Trypan blue dye exclusion. Flow cytometry was used to determinate autophagy and nuclear staining. Morphometric analysis was used to verify senescence and apoptosis. The mechanism that induced cell growth inhibition was analyzed by Western Blot. Treatment with exenatide significantly decreases cell proliferation and increases autophagy, both in relation to control and liraglutide. In addition, mTOR inhibition was greater in cells treated with exenatide. In relation to chronic treatment, exenatide does not allow cellular regrowth by preventing some resistance mechanism that the cells can acquire. These results suggest that exenatide has a potent anti-proliferative activity via mTOR modulation and, among the GLP-1 analogs tested, could be in the future an alternative for HCC treatment.

7.
Toxicol In Vitro ; 48: 11-25, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29288082

RESUMO

Octyl gallate (OG) is an antioxidant that has shown anti-tumor, anti-diabetic and anti-amyloidogenic activities. Mitochondria play an important role in hepatocellular carcinoma, mainly by maintaining accelerated cellular proliferation through the production of ATP. Thus, the mitochondria may be a target for antitumor therapies. Here, we investigated the effects of OG in the hepatocarcinoma cell line (HepG2) and the mechanisms involved. We report, for the first time, that treatment with OG for 24h inhibited HepG2 cell growth by decreasing mitochondrial activity and mass, which led to the reduction of ATP levels. This reduction in the energy supply triggered a decrease in Ki67 protein expression, leading cells to cycle arrest. In addition, treatment with two doses of OG for 48h induced loss of mitochondrial functionality, mitochondrial swelling and apoptosis. Finally, we report that HepG2 cells had no resistance to treatment after multiple doses. Collectively, our findings indicate that metabolic dysregulation and Ki67 protein reduction are key events in the initial anti-proliferative action of OG, whereas mitochondrial swelling and apoptosis induction are involved in the action mechanism of OG after prolonged exposure. This suggests that OG targets mitochondria, thus representing a candidate for further research on therapies for hepatocarcinoma.


Assuntos
Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Antígeno Ki-67/biossíntese , Mitocôndrias/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Resistência a Medicamentos , Metabolismo Energético/efeitos dos fármacos , Ácido Gálico/farmacologia , Células Hep G2 , Humanos , Antígeno Ki-67/efeitos dos fármacos , Dilatação Mitocondrial/efeitos dos fármacos , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Fagossomos/efeitos dos fármacos
8.
Eur J Pharmacol ; 809: 32-41, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28501576

RESUMO

It has been reported that glucagon-like peptide-1 (GLP-1) agents have been associated with both the increased risk of cancer and inhibition of tumor growth and metastases. The aim of this study is to evaluate the effect of liraglutide on hepatocellular carcinoma cells - HepG2. Cytometry was used to evaluate mechanism related to decreased cell proliferation. Nuclear staining and morphometric analysis were also used to verify the process that was taking place after treatment with liraglutide, and in order to better understand the mechanism, TGF-ß1 was performed. HepG2 cells decreased proliferation after liraglutide treatment without altering oxidative stress levels. Liraglutide was able to induce autophagy and senescence through the increase of TGF-ß1 which possibly explains the growth decrease. We have demonstrated that liraglutide has an antiproliferative effect in HepG2 cells inducing autophagy and senescence by the increase of TGF-ß1.


Assuntos
Autofagia/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Liraglutida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia
9.
Biomed Pharmacother ; 89: 358-365, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242545

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent primary liver tumor that affects the world population. Liver cancer inevitably causes great harms and its treatment is extremely difficult. Its development is related to the existence of chronic liver injury, such as in cirrhosis. Cancer is a disease related to the process of inflammation so, research with anti-inflammatory agents has been performed for the development of anti-tumor drugs. Fructose-1,6-bisphosphate (FBP), a metabolite of the glycolytic route, has shown anti-inflammatory actions. The purpose of this study is to investigate the effect of FBP on HepG2 cells growth and inflammatory parameters. Results showed that FBP decreased the proliferation of HepG2 cells through trypan blue assay, without causing necrosis, shown by the intracellular release of LDH. By flow cytometry, we observed a significant IL-8 decrease which is closely related to the tumoral progression and chemotherapeutic resistance, especially in HCC. Then, we found, by RT-PCR, a high expression level of pro-apoptotic protein, such as Bax and p53, and decreased the expression levels of anti-apoptotic proteins, like Bcl-2 suggesting apoptosis. Finally, our results showed that FBP can be a potential therapeutic agent to slow the progress of HCC.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Frutosedifosfatos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-8/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação/metabolismo , Interleucina-8/genética , Estresse Oxidativo/efeitos dos fármacos
10.
Oncol Rep ; 36(5): 2647-2652, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27665945

RESUMO

Hepatocellular carcinoma is the most prevalent type of tumor among primary tumors affecting the liver. Rapamycin is currently used as a basis for chemotherapy in the treatment of cancers, including the liver. Because it shows several adverse effects, minimizing these effects without compromising efficacy is important. In this sense other drugs may be used concomitantly. One of these drugs is fructose-1,6-bisphosphate (FBP), which has shown therapeutic effect in various pathological situations, having antioxidant and anti-inflammatory proprieties. The objective of the present study was to evaluate the activity of rapamycin in combination with the FBP in HepG2 cell proliferation and the mechanisms involved. HepG2 cells were analyzed after 72 h of treatment with both drugs. Cell proliferation, cytotoxicity, cytokines, apoptosis, senescence, autophagy and oxidative stress were accessed. Ιt was demonstrated that the combination is more efficient than the single use of substances, because subtherapeutic doses of rapamycin, when associated to FBP become effective, reducing cell proliferation, through a significant increase in the production of tiobarbituric acid reactive substances (TBARS), suggesting that this might be the cause of death by apoptosis. According to these results, we believe that the association of both drugs may be a promising choice for the treatment of hepatocarcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Frutose-Bifosfatase/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Sirolimo/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Radicais Livres/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia
11.
Biomed Pharmacother ; 84: 1282-1290, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27810785

RESUMO

Hepatocellular carcinoma is the most prevalent primary liver tumor and is among the top ten cancer that affect the world population. Its development is related, in most cases, to the existence of chronic liver injury, such as in cirrhosis. The knowledge about the correlation between chronic inflammation and cancer has driven new researches with anti-inflammatory agents that have potential for the development of antitumor drugs. Gallic acid is a phenolic acid found in many natural products and have shown anti-inflammatory, anti-tumor, anti-mutagenic and antioxidant actions. The purpose of this study was to investigate the effect of gallic acid on acute and chronic cell proliferation and inflammatory parameters of hepatocellular carcinoma cells (HepG2), as well as to investigate the mechanisms involved. Results showed that the gallic acid decreased the proliferation of HepG2 cells in a dose-dependent manner (Trypan blue exclusion assay), without causing necrosis (LDH assay). We observed a significant increase in the percentage of small and regular nuclei (Nuclear Morphometric Analysis assay), a significant induction of apoptosis by Annexin V-FITC and PI assay and no interference with the cell cycle using the FITC BrdU Flow Kit. We observed a significant reduction in the levels of IL-8 and increased levels of IL-10 and IL-12 (Cytometric Bead Array Human Inflammation Assay). Furthermore, gallic acid caused no cancer cells regrowth at a long term (Cumulative Population Doubling assay). According to these results, gallic acid showed a strong potential as an anti-tumor agent in hepatocellular carcinoma cells.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Gálico/farmacologia , Interleucina-8/metabolismo , Biomarcadores Tumorais/metabolismo , Ciclo Celular/efeitos dos fármacos , Forma do Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Citometria de Fluxo , Ácido Gálico/química , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , L-Lactato Desidrogenase/metabolismo
12.
Rev. bras. anal. clin ; 47(4): 133-140, 2015. tab, graf
Artigo em Português | LILACS | ID: lil-797096

RESUMO

Validar o analisador hematológico Sysmex XE-2100D (Kobe, Japan), descreveras etapas do processo e avaliar seu desempenho antes da sua inserção na rotina detrabalho do Laboratório Municipal de Gravataí, RS. Métodos: O estudo foi realizado com101 amostras de sangue total de pacientes adultos. Foram realizados quatro testes:precisão intraensaio, linearidade, exatidão e carreamento. Resultados: Os testes deprecisão apresentaram resultados adequados para a maioria dos parâmetros. Somentea contagem absoluta de monócitos e a quantificação de plaquetas tiveram valoressuperiores aos preconizados em algumas amostras. O coeficiente de variação foi inferiora 1,5% para a série vermelha. Para linearidade, os coeficientes de correlação foramsuperiores a 0,99; no teste de exatidão, superiores a 0,98 para a maioria dos parâmetros,e o percentual de carreamento inferior a 1,0% para todos os parâmetros analisados.Conclusão: Ao se analisarem amostras com perfis semelhantes aos testados pelofabricante, os resultados de precisão foram excelentes; entretanto, conforme esperado,as amostras com resultados alterados apresentaram coeficientes de variação maiores.Os resultados de precisão indicam a necessidade de outros estudos utilizando amostrascom resultados fora do limite de normalidade para determinação do coeficiente de variaçãoaceitável para esse tipo de amostra. Os resultados de linearidade, exatidão e carreamentoforam semelhantes aos obtidos em outros estudos. Considerando os resultados obtidos,o equipamento foi aprovado para utilização no laboratório...


Assuntos
Humanos , Automação Laboratorial , Hematologia , Controle de Qualidade , Estudos de Validação como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA