Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mikrochim Acta ; 191(7): 417, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913195

RESUMO

A novel electrochemical sensor was developed for the detection of lead (Pb) and copper (Cu) ions using spent coffee grounds decorated with iron oxide particles (FeO/SCG). The FeO-decorated SCG was used to modify a glassy carbon electrode (GCE). FeO, SCG, and FeO/SCG were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical properties of the modified electrode were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrode modifications increased the active surface area and electron transfer and enhanced the accumulation of the target analyte. In the optimal condition, the developed sensor showed linear ranges of 1.0 µg L-1-0.05 mg L-1 and 0.05 mg L-1-0.8 mg L-1 for Pb2+ and 5.0 µg L-1-0.1 mg L-1 and 0.1 mg L-1-0.8 mg L-1 for Cu2+. The limit of detection (LOD) was 1.0 µg L-1 for Pb2+ and 2.4 µg L-1 for Cu2+. The developed sensor was successfully applied to determine Pb2+ and Cu2+ in bullet holes. The results were in good agreement with those obtained by inductively coupled plasma optical emission spectrometry (ICP/OES).

2.
Mikrochim Acta ; 190(6): 232, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37213023

RESUMO

A simple label-free electrochemical immunosensor for ovarian cancer (OC) detection was developed using a hierarchical microporous carbon material fabricated from waste coffee grounds (WCG). The analysis method exploited near-field communication (NFC) and a smartphone-based potentiostat. Waste coffee grounds were pyrolyzed with potassium hydroxide and used to modify a screen-printed electrode. The modified screen-printed electrode was decorated with gold nanoparticles (AuNPs) to capture a specific antibody. The modification and immobilization processes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The sensor had an effective dynamic range of 0.5 to 50.0 U mL-1 of cancer antigen 125 (CA125) tumor marker with a correlation coefficient of 0.9995. The limit of detection (LOD) was 0.4 U mL-1. A comparison of the results obtained from human serum analysis with the proposed immunosensor and the results obtained from the clinical method confirmed the accuracy and precision of the proposed immunosensor.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias Ovarianas , Feminino , Humanos , Carbono , Nanopartículas Metálicas/química , Ouro/química , Café , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Neoplasias Ovarianas/diagnóstico
3.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459019

RESUMO

Multichannel graphite electrodes (MGrEs) have been designed and fabricated in this study. A template was cut from an adhesive plastic sheet using a desktop cutting device. The template was placed on a polypropylene substrate, and carbon graphite ink was applied with a squeegee to the template. The size of the auxiliary electrode (AE) as well as the location of the reference electrode (RE) of MGrEs design were investigated. Scanning electron microscopy was used to determine the thickness of the ink on the four working electrodes (WEs), which was 21.9 ± 1.8 µm. Cyclic voltammetry with a redox probe solution was used to assess the precision of the four WEs. The intra-electrode repeatability and inter-electrode reproducibility of the MGrEs production were satisfied by low RSD (<6%). Therefore, the MGrEs is reliable and capable of detecting four replicates of the target analyte in a single analysis. The electrochemical performance of four WEs was investigated and compared to one WE. The sensitivity of the MGrEs was comparable to the sensitivity of a single WE. The MGrEs' potential applications were investigated by analyzing the nitrite in milk and tap water samples (recoveries values of 97.6 ± 0.4 to 110 ± 2%).


Assuntos
Grafite , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Impressão Tridimensional , Reprodutibilidade dos Testes
4.
Langmuir ; 37(49): 14302-14313, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34859679

RESUMO

Flexible electronics have gained more attention for emerging electronic devices such as sensors, biosensors, and batteries with advantageous properties including being thin, lightweight, flexible, and low-cost. The development of various forms of allotropic carbon papers provided a new dry-manufacturing route for the fabrication of flexible and wearable electronics, while the electrochemical performance and the bending stability are largely influenced by the bulk morphology and the micro-/nanostructured domains of the carbon papers. Here, we evaluate systematically the intrinsic physicoelectrochemical properties of allotropic carbon-based conducting papers as flexible electrodes including carbon-nanotubes-paper (CNTs-paper), graphene-paper (GR-paper), and carbon-fiber-paper (CF-paper), followed by functionalization of the allotropic carbon papers for the fabrication of flexible electrodes. The morphology, chemical structure, and defects originating from the allotropic nanostructured carbon materials were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, followed by evaluating the electrochemical performance of the corresponding flexible electrodes by cyclic voltammetry and electrochemical impedance spectroscopy. The electron-transfer rate constants of the CNTs-paper and GR-paper electrodes were ∼14 times higher compared with the CF-paper electrode. The CNTs-paper and GR-paper electrodes composed of nanostructured carbon showed significantly higher bending stabilities of 5.61 and 4.96 times compared with the CF-paper. The carbon-paper flexible electrodes were further functionalized with an inorganic catalyst, Prussian blue (PB), forming the PB-carbon-paper catalytic electrode and an organic conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), forming the PEDOT-carbon-paper capacitive electrode. The intrinsic attribute of different allotropic carbon electrodes affects the deposition of PB and PEDOT, leading to different electrocatalytic and capacitive performances. These findings are insightful for the future development and fabrication of advanced flexible electronics with allotropic carbon papers.


Assuntos
Grafite , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Eletrônica
5.
Mikrochim Acta ; 188(6): 180, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33950304

RESUMO

A novel strategy was developed to extract, detect, and quantify trace-level DNA. For the extraction step, a composite of methylene blue (MB), poly(acrylic acid) (PAA), and modified iron oxide magnetic nanoparticles (IOMNPs) (PAA/IOMNPs) was used to adsorb DNA from the sample. MB-PAA/IOMNPs with adsorbed DNA were then separated from the solution with an external magnet and MB-DNA was eluted from PAA/IOMNPs with acetic acid. In the detection step, MB-DNA was adsorbed on the surface of 3-aminopropyltriethoxysilane (APTES)-modified glassy carbon electrode via electrostatic force. DNA was quantified by measuring the oxidation peak of MB at a potential -0.13 V vs. Ag/AgCl using differential pulse voltammetry. Under the optimal experimental conditions, the DNA sensor showed linear ranges from 0.001 to 0.005 pg µL-1, 0.005 to 0.070 pg µL-1, and 0.070 to 0.400 pg µL-1 and a limit of detection of 0.87 fg µL-1. The proposed sensor detected trace DNA in real samples with recoveries that ranged from 80.4 to 90.4%.


Assuntos
Fracionamento Químico/métodos , DNA/análise , Técnicas Eletroquímicas/métodos , Resinas Acrílicas/química , Adsorção , DNA/química , DNA/isolamento & purificação , Técnicas Eletroquímicas/instrumentação , Eletrodos , Humanos , Limite de Detecção , Nanopartículas Magnéticas de Óxido de Ferro/química , Azul de Metileno/química , Mucosa Bucal/química , Propilaminas/química , Reprodutibilidade dos Testes , Silanos/química
6.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884043

RESUMO

Polymer gel sensors on 96-well plates were successfully used to detect four different multi-explosives, including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), nitrite, and perchlorate. The products of reactions between the explosives and the polymer gel sensors were digitally captured, and the images were analyzed by a developed Red-Green-Blue (RGB) analyzer program on a notebook computer. RGB color analysis provided the basic color data of the reaction products for the quantification of the explosives. The results provided good linear range, sensitivity, limit of detection, limit of quantitation, specificity, interference tolerance, and recovery. The method demonstrated great potential to detect explosives by colorimetric analysis of digital images of samples on 96-well plates. It is possible to apply the proposed method for quantitative on-site field screening of multi-explosives.


Assuntos
Substâncias Explosivas , Trinitrotolueno , Colorimetria , Dinitrobenzenos , Polímeros
7.
Molecules ; 26(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065709

RESUMO

A simple and highly sensitive electrochemical sensor was developed for adsorptive cathodic stripping voltammetry of alprazolam. Based on an electrochemically pretreated glassy carbon electrode, the sensor demonstrated good adsorption and electrochemical reduction of alprazolam. The morphology of the glassy carbon electrode and the electrochemically pretreated glassy carbon electrode were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical behaviors of alprazolam were determined by cyclic voltammetry, and the analytical measurements were studied by adsorptive cathodic stripping voltammetry. Optimized operational conditions included the concentration and deposition time of sulfuric acid in the electrochemical pretreatment, preconcentration potential, and preconcentration time. Under optimal conditions, the developed alprazolam sensor displayed a quantification limit of 0.1 mg L-1, a detection limit of 0.03 mg L-1, a sensitivity of 67 µA mg-1 L cm-2 and two linear ranges: 0.1 to 4 and 4 to 20 mg L-1. Sensor selectivity was excellent, and repeatability (%RSD < 4.24%) and recovery (82.0 ± 0.2 to 109.0 ± 0.3%) were good. The results of determining alprazolam in beverages with the developed system were in good agreement with results from the gas chromatography-mass spectrometric method.


Assuntos
Alprazolam/análise , Bebidas/análise , Técnicas Eletroquímicas/instrumentação , Adsorção , Espectroscopia Dielétrica , Eletrodos , Limite de Detecção , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Mikrochim Acta ; 187(9): 539, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32876787

RESUMO

A highly stable flow-injection amperometric hydrazine sensor was developed based on a glassy carbon electrode modified with palladium-poly(3,4-ethylene dioxythiophene) coated on carbon microspheres/graphene nanoplatelets (Pd-PEDOT@CM/GNP/GCE). The Pd-PEDOT@CM/GNP composite was characterized by scanning electron microscopy and energy-dispersive x-ray analysis (SEM/EDX). The modified GCE was electrochemically characterized using cyclic voltammetry and chronoamperometry. The electrocatalytic activity of the Pd-PEDOT@CM/GNP/GCE toward hydrazine oxidation was significantly better than the activity of a bare GCE, a CM/GCE, a GNP/GCE, a Pd-PEDOT/GCE, and a Pd-PEDOT@CM/GCE. The sensor operated best at a low working potential of + 0.10 V (vs. Ag/AgCl). Under optimal conditions, sensitivity toward hydrazine detection and operational stability (601 injections/one electrode preparation) were excellent. The response was linear from 1.0 to 100 µmol L-1 and from 100 to 5000 µmol L-1 with a detection limit of 0.28 ± 0.02 µmol L-1 and high sensitivity of 0.200 µA µM-1 cm-2. The sensor showed good repeatability (relative standard deviation (RSD) < 1.4%, n = 15), reproducibility (RSD < 2.7%, n = 6), and anti-interference characteristics toward hydrazine detection. The feasibility of the electrochemical sensor was proved by the successful determination of hydrazine in water samples, and the results were in good agreement with those obtained from spectrophotometric analysis. Graphical abstract.

9.
Mikrochim Acta ; 187(11): 591, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025245

RESUMO

An electrochemical method has been developed to determine iodide in urine using an electrode modified with silver oxide microparticles-poly acrylic acid/poly vinyl alcohol (Ag2OMPs-PAA/PVA). Silver oxide particles were formed by electrochemical oxidation via cyclic voltammetry. The modified electrode exhibited an excellent response to iodide detection by cathodic stripping voltammetry. The fabrication and operation conditions were optimized in terms of PVA concentration, K2HPO4 concentration, amount of AgMPs-PAA/PVA, number of cycles for oxide formation, electrolyte, applied potential (vs. Ag/AgCl), and time. Under the optimum conditions, iodide determination produced a linear range from 1 to 40 µM. The limit of detection was 0.3 µM. Precision was found to be within 7.4% RSD. The developed method was applied to the determination of iodide in urine samples of pregnant women with satisfying recoveries (86 ± 1 to 108 ± 1%). Graphical abstract.


Assuntos
Iodetos/urina , Gravidez/urina , Resinas Acrílicas/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Feminino , Humanos , Iodetos/química , Iodo/deficiência , Limite de Detecção , Óxidos/química , Álcool de Polivinil/química , Complicações na Gravidez/diagnóstico por imagem , Complicações na Gravidez/urina , Compostos de Prata/química
10.
Mikrochim Acta ; 187(12): 646, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33165663

RESUMO

A simple, sensitive, and effective adsorptive stripping voltammetric sensor for the detection of trace-level promethazine was created based on a gold nanoparticle-graphene nanoplatelet-modified glassy carbon electrode (AuNP-GrNP/GCE). AuNP-GrNP nanocomposites were synthesized using an electroless deposition process, and the morphology was characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical behavior and detection of promethazine at the AuNP-GrNP/GCE were investigated utilizing cyclic voltammetry and adsorptive stripping voltammetry. The AuNP-GrNP/GCE showed outstanding synergistic electrochemical activity for promethazine oxidation, a highly active surface area, great adsorptivity, and outstanding catalytic properties. The electrolyte pH, amount of AuNP-GrNP nanocomposite, preconcentration potential (vs. Ag/AgCl), and time were optimized to obtain a high performance electrochemical sensor. Under optimal conditions, the proposed sensor displayed two linear concentration ranges from 1.0 nmol L-1 to 1.0 µmol L-1 and from 1.0 to 10 µmol L-1. The limits of detection and quantitation were 0.40 and 1.4 nmol L-1, respectively. This sensor displayed high sensitivity, a capability for rapid analysis, and excellent repeatability and reproducibility. The developed sensor was effective and practical for promethazine detection in biological fluids and forensic samples, and the obtained results exhibited excellent agreement with the results obtained using the method described in the British Pharmacopoeia. Graphical abstract.


Assuntos
Eletrodos , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Prometazina/análise , Detecção do Abuso de Substâncias/métodos , Líquidos Corporais/química , Humanos , Limite de Detecção , Microscopia Eletrônica de Varredura/métodos , Prometazina/normas , Padrões de Referência , Reprodutibilidade dos Testes , Análise Espectral/métodos
11.
Analyst ; 139(23): 6160-7, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25306849

RESUMO

A novel highly sensitive and selective molecularly imprinted polymer (MIP) cryogel biosensor for determination of microalbumin in urine samples was fabricated. The MIP gel was prepared based on the graft copolymerization of acrylamide with N,N'-methylenebisacrylamide on chitosan using human serum albumin (HSA) as the template. The sub-zero polymerization allowed the solvent to form ice crystals and left a macroporous cryogel structure when it was thawed. After removing the template, the specific imprinted surface on cryogel pore walls was used to detect HSA via a redox mediator (ferrocene), entrapped in the cryogel, using differential pulse voltammetry (DPV). The electrochemical detection was improved by the presence of graphene that has been composited within the polymer. For determination of albumin, the fabricated MIP cryogel biosensor showed a high sensitivity with a wide linear range of 1.0 × 10(-4) to 1.0 × 10(1) mg L(-1) and a low limit of detection of 5.0 × 10(-5) mg L(-1) (S/N = 3). The sensor also provided a very good reusability, i.e., the sensitivity remained >90% after 9 cycles of binding-rewashing (18 analyses per cycle), while the sensitivity only decreased to 90% after 6 weeks of storage at room temperature. The biosensor also showed a good selectivity, both against bovine serum albumin (BSA) and some common possible interfering compounds normally present in urine (ascorbic acid, uric acid, urea, sodium, chloride, potassium and creatinine). The excellent performance of the biosensor was confirmed by analyzing microalbumin in urine samples, and results were in good agreement with those obtained by the standard immunoturbidimetric method (P > 0.05).


Assuntos
Acrilamida/química , Técnicas Biossensoriais/métodos , Quitosana/química , Compostos Ferrosos/química , Grafite/química , Albumina Sérica/química , Criogéis/química , Humanos , Metalocenos , Microscopia Eletrônica de Varredura
12.
Talanta ; 274: 125912, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547843

RESUMO

The 96 laser-induced multigraphene electrode (96L-MGE) integrated microwell plate (96 L-MGE-MP) is described. Each cell includes separate working, auxiliary, and reference electrodes, and the array sits on a poly-methyl methacrylate (PMMA) well. The 96 electrochemical cells were fabricated by laser ablation of polyimide adhesive tape, which created laser-induced graphene electrodes (L-GE). The microwell was produced using laser ablation of the PMMA sheet as well. The morphology and electrochemical characterization of L-GE were controlled by tuning the laser processing. L-GE fabricated at laser power-laser speed ratios of 0.008-0.02 W s mm-1displayed good electrochemical behaviors. Under the optimal condition of L-GE fabrication, the measured L-GE surface roughness was 475.47 nm. The 96 L-MGE can be fabricated in 24.2 min and is compatible with various analytes. 10 benchmark redox compounds were shown as electrocatalytic examples. The performance of each analyte was investigated by voltammetry. As proof of concept, 96 L-MGE-MP was connected to a 96× connector for multichannel detection. The RSD of the 96 L-MGE-MPwas below 5.3%, which demonstrated good fabrication reproducibility.

13.
Talanta ; 272: 125755, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364561

RESUMO

A novel label-free electrochemical immunosensor was prepared for the detection of carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) as biomarkers of cholangiocarcinoma (CCA). A nanocomposite of gold nanoparticles, molybdenum trioxide, and chitosan (Au-MoO3-Chi) was layer-by-layer assembled on the porous graphene (PG) modified a dual screen-printed electrode using a self-assembling technique, which increased surface area and conductivity and enhanced the adsorption of immobilized antibodies. The stepwise self-assembling procedure of the modified electrode was further characterized morphologically and functionally. The electroanalytical detection of biomarkers was based on the interaction between the antibody and antigen of each marker via linear sweep voltammetry using ferrocyanide/ferricyanide as an electrochemical redox indicator. Under optimized conditions, the fabricated immunosensor showed linear relationships between current change (ΔI) and antigen concentrations in two ranges: 0.0025-0.1 U mL-1 and 0.1-1.0 U mL-1 for CA19-9, and 0.001-0.01 ng mL-1 and 0.01-1.0 ng mL-1 for CEA. The limits of detection (LOD) were 1.0 mU mL-1 for CA19-9 and 0.5 pg mL-1 for CEA. Limits of quantitation (LOQ) were 3.3 mU mL-1 for CA19-9 and 1.6 pg mL-1 for CEA. The selectivity of the developed immunosensor was tested on mixtures of antigens and was then successfully applied to determine CA19-9 and CEA in human serum samples, producing satisfactory results consistent with the clinical method.


Assuntos
Técnicas Biossensoriais , Colangiocarcinoma , Grafite , Nanopartículas Metálicas , Humanos , Grafite/química , Antígeno Carcinoembrionário , Ouro/química , Técnicas Biossensoriais/métodos , Antígeno CA-19-9 , Sistemas Automatizados de Assistência Junto ao Leito , Porosidade , Nanopartículas Metálicas/química , Imunoensaio/métodos , Eletrodos , Limite de Detecção , Colangiocarcinoma/diagnóstico , Técnicas Eletroquímicas/métodos
14.
Talanta ; 272: 125822, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422904

RESUMO

This work introduces a 3D-printed portable electroplating device for the visualization of latent fingerprints (LFPs) on metallic substrates. An electroplating solution of Ag+-Cu2+ in a deep eutectic solvent (DES) is used. The electroplating is performed by two electrodes equivalent to an anode (+) and a cathode (-). The cathode is connected to the metal surface with the magnetic or alligator clip for carrying the LFP. The anode is connected to cotton dipped in the electroplating solution. The device was optimized in terms of the electroplating solution composition, and electroplating potential, current, and time. The device produced images with good resolution, revealing LFP ridges in minute detail of more than 12 points. The device also exhibited good repeatability and images were assessed against guidelines from the Centre for Applied Science and Technology (CAST) and the International Fingerprint Research Group (IFRG). The developed device could be applied to visualize LFPs in forensic investigations.

15.
Talanta ; 273: 125857, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490024

RESUMO

An electrochemical aptasensor was developed for the determination of chloramphenicol (CAP) in fresh foods and food products. The aptasensor was developed using Prussian blue (PB) and chitosan (CS) film. PB acts as a redox probe for detection and CS acts as a sorption material. The aptamer (Apt) was immobilized on a screen-printed carbon electrode (SPCE) modified with gold nanoparticles (AuNPs). Under optimum conditions, the linearity of the aptasensor was between 1.0 and 6.0 × 106 ng L-1 with a detection limit of 0.65 and a quantification limit of 2.15 ng L-1. The electrode could be regenerated up to 24 times without the use of chemicals. The aptasensor showed good repeatability (RSD <11.2%) and good reproducibility (RSD <7.7%). The proposed method successfully quantified CAP in milk, shrimp pond water and shrimp meat with good accuracy (recovery = 88.0 ± 0.6% to 100 ± 2%). The proposed aptasensor could be especially useful in agriculture to ensure the quality of food and the environment and could be used to determine other antibiotics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quitosana , Ferrocianetos , Nanopartículas Metálicas , Carbono , Ouro , Limite de Detecção , Cloranfenicol/análise , Reprodutibilidade dos Testes , Eletrodos , Carne , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
16.
Talanta ; 278: 126446, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936107

RESUMO

The simultaneous synthesis of gold nanoparticles (AuNPs) and graphene by laser ablation was demonstrated. The in-situ synthesis was performed by laser ablation of a polymer substrate covered with a gold precursor dispersion. The gold precursor was prepared in a copolymer solution of pyrrole (Py) and chitosan (Chi) to improve the nucleation of gold embedded on the laser-induced graphene electrode (LIGE). The morphology of AuNPs-pPy-Chi/LIGE was studied by scanning electron microscopy and characterized electrochemically by cyclic voltammetry. A comprehensive investigation of the electrochemical and physical features of the AuNPs-pPy-Chi/LIGE was carried out. The parameters of differential pulse voltammetry were adjusted to enhance the response to ascorbic acid (AA). The AuNPs-pPy-Chi/LIGE produced two linear ranges: from 0.25 to 5.00 and 5.00-25.00 mmol L-1. The limit of detection was 0.22 mmol L-1. Hundreds of electrodes were tested to demonstrate the excellent reproducibility of the AuNPs-pPy-Chi/LIGE fabrication. Overall, the proposed electrode allows the successful detection of AA in orange juice products with acceptable accuracy (recoveries = 97 ± 2 to 109.1 ± 0.7). The preparation strategy of the proposed AuNPs-pPy-Chi/LIGE could be adapted to detect other compounds or biomarkers.

17.
Talanta ; 276: 126179, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718644

RESUMO

A novel cost-effective disposable porous graphene electrode (P-GE) modified with bismuth nanoneedles (nano-BiNDs) is proposed as a "mercury-free" sensor for detecting heavy metals through smartphone-assisted electrochemical sensing. The P-GE was fabricated using screen-printing. Nano-BiNDs were generated on the P-GE by potentiostatic electrodeposition. Using an optimal potential of -1.20 V (vs. pseudo-Ag/AgCl) and a deposition time of 200 s, the nano-BiNDs had an average length and width of 189 ± 5 nm and 20 ± 2 nm, respectively. The analytical performances of the fabricated sensing platform were demonstrated by detecting Cd2+ and Pb2+ using square-wave anodic stripping voltammetry (SWASV) under optimized conditions. In the optimal conditions, the fabricated sensor exhibited sharp, well-defined stripping peaks for Cd2+ and Pb2+ with excellent peak-to-peak separation. The linear detection ranges were from 0.01 to 50 µg mL-1 for Cd2+ and 0.006-50 µg mL-1 for Pb2+. The detection limits for Cd2+ and Pb2+ were 3.51 and 2.10 ng mL-1, respectively. The developed portable sensor demonstrated high sensitivity, good repeatability, reproducibility, and anti-interference properties. The proposed portable sensor quantified Cd2+ and Pb2+ in commercial seaweed products with good accuracy, consistent with the results obtained using the standard ICP-OES method.

18.
Talanta ; 277: 126330, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38833905

RESUMO

In this work, flower-like ZnO nanoparticles (ZnONPs) were synthesized using zinc nitrate (Zn(NO3)2 6H2O) as a precursor with KOH. The morphology of the ZnONPs was controlled by varying the synthesis temperature at 50, 75 and 95 °C. The morphology and structure of ZnONPs were characterized using Scanning Electron Microscopy, and X-Ray Diffraction and Brunauer-Emmett Teller analysis. ZnONPs were successfully synthesized by a simple chemical precipitation method. A synthesis temperature of 75 °C produced the most suitable flower-like ZnONPs, which were combined with graphene nanoplatelets to develop a label-free electrochemical immunosensor for the detection of the colon cancer biomarker carcinoembryonic antigen in human serum. Under optimum conditions, the developed immunosensor showed a linear range of 0.5-10.0 ng mL-1 with a limit of detection of 0.44 ng mL-1. The label-free electrochemical immunosensor exhibited good selectivity, reproducibility, and repeatability, and recoveries were excellent. The immunosensor is used with a Near-Field Communication potentiostat connected to a smartphone to facilitate point-of-care cancer detection in low-resource locations.


Assuntos
Antígeno Carcinoembrionário , Óxido de Zinco , Antígeno Carcinoembrionário/sangue , Antígeno Carcinoembrionário/análise , Óxido de Zinco/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Imunoensaio/métodos , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Nanopartículas/química , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
19.
Talanta ; 272: 125751, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377665

RESUMO

We present a highly sensitive and selective electrode of laser-induced graphene modified with poly(phenol red) (P(PhR)@LIG) for measuring zinc nutrition in rice grains using square wave anodic stripping voltammetry (SWASV). The physicochemical properties of P(PhR)@LIG were investigated with scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier infrared spectroscopy (FT-IR) and Raman spectroscopy. The modified electrode demonstrated an amplified anodic stripping response of Zn2+ due to the electropolymerization of P(PhR), which enhanced analyte adsorption during the accumulation step of SWASV. Under optimized parameters, the developed sensor provided a linear range from 30 to 3000 µg L-1 with a detection limit of 14.5 µg L-1. The proposed electrode demonstrated good reproducibility and good anti-interference properties. The sensor detected zinc nutrition in rice grain samples with good accuracy and the results were consistent with the standard ICP-OES method.

20.
Food Chem ; 447: 138987, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518621

RESUMO

Nitrite (NO2-) is widely used as an additive to extend the shelf life of food products. Excessive nitrite intake not only causes blood-related diseases but also has the potential risk of causing cancers. A disposable screen-printed electrode was modified with nano­palladium decorated bismuth sulfide microspheres (nanoPd@Bi2S3MS/SPE), and integrated with a smartphone-interfaced potentiostat to develop a portable, electrochemical nitrite sensor. NanoPd@Bi2S3MS was prepared by the hydrothermal reduction of a Bi2S3MS and Pd2+ dispersion and drop cast on the SPE. The nanoPd@Bi2S3MS/SPE was coupled with a smartphone-controlled portable potentiostat and applied to determine nitrite in food samples. The linear range of the sensor was 0.01-500 µM and the limit of detection was 0.0033 µM. The proposed system showed good repeatability, reproducibility, catalytic stability, and immunity to interferences. The proposed electrode material and a smartphone-based small potentiostat created a simple, portable, fast electrochemical sensing system that accurately measured nitrite in food samples.


Assuntos
Bismuto , Nitritos , Paládio , Sulfetos , Microesferas , Smartphone , Reprodutibilidade dos Testes , Eletrodos , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA