Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850471

RESUMO

Smart sensing devices enabled hydroponics, a concept of vertical farming that involves soilless technology that increases green area. Although the cultivation medium is water, hydroponic cultivation uses 13 ± 10 times less water and gives 10 ± 5 times better quality products compared with those obtained through the substrate cultivation medium. The use of smart sensing devices helps in continuous real-time monitoring of the nutrient requirements and the environmental conditions required by the crop selected for cultivation. This, in turn, helps in enhanced year-round agricultural production. In this study, lettuce, a leafy crop, is cultivated with the Nutrient Film Technique (NFT) setup of hydroponics, and the growth results are compared with cultivation in a substrate medium. The leaf growth was analyzed in terms of cultivation cycle, leaf length, leaf perimeter, and leaf count in both cultivation methods, where hydroponics outperformed substrate cultivation. The results of the 'AquaCrop simulator also showed similar results, not only qualitatively and quantitatively, but also in terms of sustainable growth and year-round production. The energy consumption of both the cultivation methods is compared, and it is found that hydroponics consumes 70 ± 11 times more energy compared to substrate cultivation. Finally, it is concluded that smart sensing devices form the backbone of precision agriculture, thereby multiplying crop yield by real-time monitoring of the agronomical variables.


Assuntos
Conservação de Recursos Energéticos , Lactuca , Hidroponia , Fenômenos Físicos , Água
2.
Soft comput ; : 1-21, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37362266

RESUMO

Progressive organ-level disorders in the human body are often correlated with diseases in other body parts. For instance, liver diseases can be linked with heart issues, while cancers can be linked with brain diseases (or psychological conditions). Defining such correlations is a complex task, and existing deep learning models that perform this task either showcase lower accuracy or are non-comprehensive when applied to real-time scenarios. To overcome these issues, this text proposes design of an augmented bioinspired deep learning-based multidomain body parameter analysis via heterogeneous correlative body organ analysis. The proposed model initially collects temporal and spatial data scans for different body parts and uses a multidomain feature extraction engine to convert these scans into vector sets. These vectors are processed by a Bacterial Foraging Optimizer (BFO), which assists in identification of highly variant feature sets, which are individually classified into different disease categories. A fusion of Inception Net, XCeption Net, and GoogLeNet Models is used to perform these classifications. The classified categories are linked with other disease types via temporal analysis of blood reports. The temporal analysis engine uses Modified Analytical Hierarchical Processing (MAHP) Model for calculating inter-organ disease dependency probabilities. Based on these probabilities, the model is able to generate a patient-level correlation map, which can be used by clinical experts to suggest remedial treatments, due to which the model was able to identify correlations between brain disorders and kidneys, heart diseases and lungs, heart diseases and liver, brain diseases and different types of cancers with high efficiency when evaluated under clinical scenarios. When validated on MITBIH, DEAP, CT Kidney, RIDER, and PLCO data samples, it was observed that the proposed model was capable of improving accuracy of correlation by 8.5%, while improving precision and recall by 3.2% when compared with existing correlation models under similar clinical scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA